Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 21

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  acrylamide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
By radical polymerization, two series of superabsorbent hydrogels of hydroxybutyl acrylate and acrylamide copolymers, poly(HBA-co-AAm), were obtained. In the first series, the ratio of hydroxybutyl acrylate to acrylamide was optimized with a constant amount of methylene bisacrylamide (MBA) as a cross-linking agent. In the second series, the amount of MBA was changed at a fixed monomer ratio. The structure of the copolymers was confirmed by the FTIR method. Swelling parameters and mechanical properties were tested. Hydrogels with a high Young’s modulus and a high degree of swelling were selected for the study of adsorption properties towards Co2+, Ni2+ and Cd2+ ions. The influence of basic factors such as adsorbent dose, exposure time and pH on adsorption efficiency was also investigated. The ability to adsorb heavy metal ions changed as follows: Co2+> Ni2+> Cd2+.
PL
Metodą polimeryzacji rodnikowej otrzymano dwie serie superchłonnych hydrożeli kopolimerów akrylanu hydroksybutylu i akryloamidu, poli(HBA-co-AAm), otrzymano. W pierwszej serii optymalizowano stosunek akrylanu hydroksybutylu do akryloamidu przy stałej ilości metylenobisakryloamidu (MBA) jako czynnika sieciującego. W drugiej serii przy ustalonym stosunku monomerów zmieniano ilość MBA. Strukturę kopolimerów potwierdzono metodą FTIR. Zbadano parametry pęcznienia oraz właściwości mechaniczne. Do badań właściwości adsorpcyjnych w stosunku do jonów Co2+, Ni2+ i Cd2+ wytypowano hydrożele o wysokim module Younga i wysokim stopniu pęcznienia. Zbadano również wpływ podstawowych czynników, takich jak dawka adsorbentu, czas ekspozycji i pH na efektywność adsorpcji. Zdolność do adsorpcji jonów metali ciężkich zmieniała się następująco: Co2+> Ni2+> Cd2+.
EN
The aim of the experiment is to establish a method for the determination of acrylamide in food by automatic accelerated solvent extraction-gas chromatography-mass spectrometry. D3-acrylamide was used as isotope internal standard, crushed samples were extracted and purified by automatic accelerated solvent, acrylamide was derivatized into 2,3-dibromopropanamide by potassium bromide and potassium bromate under acidic conditions, and then the derivative was extracted by ethyl acetate and detected by gas chromatography-mass spectrometry. The method had a good linear relationship in the concentration range of 10–2000 ng/mL, and the coefficient of determination (R2) was 0.9997. The detection limit of the method was 3 mg/kg. The quantification limit of the method was 10 mg/kg. The standard addition recovery of acrylamide was between 105 and 120%, and the relative standard deviation of the recovery of acrylamide was less than 3.0%. The experimental result showed that the method was simple, sensitive, efficient and accurate, and could be used for the determination of acrylamide in food.
PL
Akryloamid jest związkiem chemicznym powstającym w wyniku obróbki termicznej produktów bogatych szczególnie w węglowodany. Pieczenie, smażenie, grillowanie, prażenie czy tostowanie to przykłady obróbki termicznej przebiegającej w temperaturze powyżej 100°C, w której tworzy się opisywany związek. Pod względem chemicznym powstaje w wyniku reakcji Maillarda, przebiegającej pomiędzy aminokwasem asparaginą a cukrami redukującymi, takimi jak glukoza i fruktoza. Powszechność zastosowania wymienionych rodzajów obróbki termicznej w procesie przygotowania żywności sprawia, że chyba niemożliwe jest całkowite wyeliminowanie tego związku z diety. Zdaniem naukowców akryloamid dostarczany do organizmu w nadmiarze może być przyczyną wielu dolegliwości, z chorobami nowotworowymi na czele. W artykule scharakteryzowano akryloamid, omówiono źródła jego występowania, zagrożenia wynikające ze spożycia produktów zawierających znaczne ilości tego związku oraz wymieniono środki łagodzące służące obniżeniu jego poziomu w żywności.
EN
Acrylamide is a chemical compound resulting from the heat treatment of products that are particularly rich in carbohydrates. Baking, frying, barbecuing, roasting or toasting are examples of heat treatment at a temperature above 100°C, in which the described compound is formed. In chemical terms, it is formed as a result of the Maillord reaction between the amino acid asparagine and reducing sugars such as glucose and fructose. The widespread use of the above types of heat treatment in the food preparation process makes it probably impossible to completely eliminate this compound from the diet. According to scientists, acrylamide delivered to the body in excess can cause many ailments, including cancer. The article characterizes acrylamide, discusses the sources of its occurrence as well as hazards arising from the consumption of products containing significant amounts of this compound, and lists mitigating measures to reduce its level in food.
PL
Akryloamid (AA) jest syntetycznym związkiem chemicznym powszechnie używanym w wielu gałęziach przemysłu. Stosowany jest w produkcji tworzyw sztucznych, farb, lakierów, klejów i zapraw murarskich, a także w przemyśle celulozowo-papierniczym i kosmetycznym. Zainteresowanie AA wzrosło w 2002 r. po doniesieniu szwedzkich naukowców dotyczącym powstawania tej substancji w niektórych produktach spożywczych. Akryloamid tworzy się podczas obróbki termicznej żywności (smażenie, pieczenie, prażenie) w reakcji grupy karbonylowej cukrów redukujących z aminokwasami (przede wszystkim asparaginą), której wynikiem jest brązowienie produktu. Akryloamid, będący neurotoksyną i czynnikiem potencjalnie rakotwórczym, znajduje się w różnych przetworzonych termicznie produktach żywnościowych, takich jak: chipsy ziemniaczane, frytki, pieczywo, wyroby ciastkarskie, herbatniki, kawa. Ostatnie rozporządzenie Komisji (UE) 2017/2158 z dnia 20 listopada 2017 r. ustanawia tzw. środki łagodzące i poziomy odniesienia, mające na celu zmniejszenie ilości akryloamidu w żywności.
EN
Acrylamide (AA) is a synthetic chemical compound commonly used in many branches of industry. It is mainly used in plastics, paints, varnishes, adhesives and mortars production and is also applied in the cellulose-paper and cosmetic industries. The interest in AA increased in 2002, when Swedish scientists reported the formation of this substance in some food products. Acrylamide is created during the heat treatment of foodstuffs, where amino acids react with carbonyl group of reducing sugars during baking and frying, leading to the browning of foods. Acrylamide, a neurotoxin and potential carcinogen, has been found in various thermally processed foods such as potato chips, French fries, bread, cookies, biscuits, and coffee. The Commission Regulation (EU) 2017/2158 of 20 November 2017 has been recently published, establishing mitigation measures and reference levels to reduce the presence of acrylamide in food.
5
Content available remote Akryloamid w żywności dla dzieci jako realne zagrożenie dla zdrowia
PL
Opisano występowanie akryloamidu w żywności oraz mechanizmy jego powstawania. Przedstawiono szkodliwy wypływ akryloamidu, konsekwencje zdrowotne związane z jego spożywaniem oraz szacowane spożycie ze szczególnym uwzględnieniem dzieci. Wskazano sposoby przetwarzania żywności pod kątem możliwości ograniczania zachodzenia reakcji Maillarda i unikania tworzenia szkodliwych jej produktów, w tym akryloamidu ze szczególnym uwzględnieniem żywności dla małych dzieci.
EN
A review, with 50 refs., of issues related to the formation of acrylamide during processing and storage of food as well as methods used to reduce its content in children food.
PL
Otrzymano akryloamidowe kopolimery szczepione skrobi ziemniaczanej o stosunku masowym akryloamidu do kwasu akrylowego równym 2 : 1, sieciowane trzema akrylowymi związkami stosowanymi w różnym stężeniu. Jako inicjator reakcji wykorzystano dichlorowodorek 2,2’-­azobis(2-me­tylo­propionamidyny). Kopolimery skrobi scharakteryzowano za pomocą spektroskopii w podczerwieni, różnicowej kalorymetrii skaningowej oraz reowiskozymetrycznie. Właściwości sorpcyjne w stosunku do kationów Fe3+ i Cu2+ analizowano metodą spektrofotometryczną, a w wypadku wody określano w testach wodochłonności i pęcznienia.
EN
Potato starch grafted acrylamide copolymers with weight ratio of acrylamide (AAm) to acrylic acid (AA) of 2 : 1, crosslinked with three acrylic compounds at various concentrations, were prepared. 2,2’-azobis(2-methylpropionamidine) dihydrochloride was used as a radical initiator. Starch copolymers were characterized by infrared spectroscopy, differential scanning calorimetry and rheoviscometry. The Fe3+and Cu2+ cations sorption properties were analyzed using spectrophotometric method. Also, water absorption and swelling tests were performed.
PL
W pracy opisano otrzymanie kopolimerów skrobia-g-poli(akryloamid-co-kwas akrylowy) metodą reaktywnego wytłaczania przy stałej prędkości obrotowej ślimaków - 90 obr./min. Jako inicjator reakcji zastosowano AAPH [dichlorowodorek 2,2’-azodi(2-amidyniopropanu] oraz trzy środki sieciujące: N,N’-metylenobisakryloamid (MBA), mieszaninę tri- i tetraakrylanu pentaerytrytu (PETIA ) oraz akrylowy związek wielofunkcyjny o nazwie handlowej EBECRYL 40. Przedstawiono parametry pracy wytłaczarki oraz wpływ użytych środków sieciujących na wodochłonność wytłoczy i ich wygląd. Charakterystykę fizykochemiczną otrzymanych kopolimerów szczepionych skrobi przeprowadzono metodą spektroskopii w podczerwieni i skaningowej kalorymetrii różnicowej. Otrzymane kopolimery szczepione skrobi posiadają zdolność absorbowania wody; zdolne są do 10-krotnego powiększenia swojej masy w porównaniu do masy wyjściowej absorbenta. Najlepszym środkiem sieciującym dla testowanych akrylowych kopolimerów skrobi okazała się PETIA.
EN
The work describes starch-g-poly(acrylamide-co-acrylic acid) copolymers obtained during the reactive extrusion processes with constant extrusion screw speed rotation - 90 rpm. 2.2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH) was used as a reaction initiator and three crosslinking agents were applied: N’N-methylenebisacrylamide (MBA), mixture of pentaerythritol tetracrylate and pentaerythritol triacrylate (PETIA ) and acrylic multifunctional compound trade name EBECRYL 40. The parameters of the extruder during reaction and the impact of used crosslinking agents for water absorption of starch copolymers and their appearance have been shown. Physicochemical characteristics of the starch graft copolymer have been done by infrared spectroscopy and differential scanning calorimetry. The starch grafted copolymers have the ability to absorb water; they are capable of a 10-fold increase their weight compared to the initial absorbent mass. The best crosslinking agent for the tested starch graft acrylate copolymers has been proved PETIA.
EN
Copolymers of acrylamide (AM) with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and tris(methoxyethoxy)vinylsilane (TMEVS) with different compositions were synthesized at low conversion by free radical polymerization in dimethylformamide (DMF) using benzoyl peroxide (BPO) as an initiator. The copolymers were characterized by Fourier transform infrared spectroscopy (FT-IR), and their thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The copolymers composition was determined by elemental analysis. The monomer reactivity ratios were estimated by linearization methods proposed by Fineman-Ross and Kelen-Tudos, the intersection method proposed by Mayo-Lewis and nonlinear method proposed by curve fitting procedure. The derived reactivity ratios (r1, r2) are: 1.87, 0.80 for TMSPMA-co-AM and 0.22, 1.21 for TMEVS-co-AM. Both copolymers formed blocks of one of the monomer units. The microstructure of copolymers and sequence distribution of monomers in the copolymers were calculated by statistical method based on the average reactivity ratios and found that these values are in agreement with the derived reactivity ratios.
PL
Kopolimery akryloamidu (AM) z metakrylanem 3-(trimetoksysililo)propylu (TMSPMA) itris­(me­toksyetoksy)winylosilanem (TMEVS), o różnych składach, zsyntetyzowano w warunkach małej konwersji metodą wolnorodnikowej polimeryzacji w dimetyloformamidzie (DMF), z zastosowaniem nadtlenku benzoilu (BPO) jako inicjatora. Otrzymane kopolimery charakteryzowano za pomocą spektroskopii w podczerwieni z transformacją Fouriera (FT-IR), różnicowej kalorymetrii skaningowej (DSC) oraz analizy termograwimetrycznej (TGA). Skład kopolimerów ustalono metodą analizy elementarnej. Współczynniki reaktywności monomerów oszacowano metodami linearyzacji zaproponowanymi przez: Finemana-Rossa, Kelena-Tudosa, Mayo-Lewisa i metodą nieliniową z zastosowaniem procedury dopasowania krzywej. Otrzymane współczynniki reaktywności (r1, r2) wynosiły: 1,87 i 0,80 dla TMSPMA-co-AM oraz 1,21 i 0,22 dla TMEVS-co-AM. Oba kopolimery miały budowę złożoną zbloków utworzonych z jednostek monomerów składowych. Mikrostrukturę oraz sekwencję monomerów w kopolimerach wyznaczono metodą statystyczną na podstawie średnich współczynników reaktywności. Stwierdzono zgodność obliczeń z wartościami otrzymanymi doświadczalnie.
PL
Akrylamid jest bezwonnym, białym i krystalicznym ciałem stałym, dobrze rozpuszczalnym w rozpuszczalnikach polarnych (woda, etanol). Jest to substancja syntetyczna stosowana w wielu dziedzinach przemysłu, głównie do produkcji poliakrylamidu. Międzynarodowa Agencja Badań nad Rakiem (IARC) zaklasyfikowała akrylamid do grupy związków prawdopodobnie rakotwórczych dla ludzi. Celem pracy było opracowanie metody oznaczania stężeń akrylamidu w powietrzu na stanowiskach pracy w zakresie 1/10 ÷ 2 wartości najwyższego dopuszczalnego steżenia (NDS), zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Badania wykonano przy zastosowaniu chromatografu cieczowego (HPLC) serii 1200 firmy Agilent Technologies z detektorem diodowym (DAD), rejestrującym sygnał przy długości fali analitycznej, którą zamieszczono w załączniku.
EN
Acrylamide is an odourless, white crystalline solid, highly soluble in polar solvents (e.g., water, ethanol). Acrylamide is a synthetic compound widely used in several industries but particularly in the production of polyacrylamide. International Agency for Research on Cancer (IARC) classified acrylamide as a probably carcinogenic to humans.The aim of this study was to develop a method for determining concentrations of acrylamide in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. EN 482.The study was performed using an liquid chromatograph (Agilent Technologies series 1200) with a diode array detector (DAD) with an analytical wavelength of 195 nm and 208 nm.
10
Content available remote Modeling the combined polymerization and drying of polyacrylamide prepolymer
EN
In the paper, the mathematical model of combined polymerisation and drying of polyacrylamide prepolymer is presented. It allows to predict the change of monomer conversion degree, polymer moisture content, the temperatures of gas and polymer in the dryer as well as dryer sizes. Using a developed model, values of technological parameters were established, providing faster polymerisation than in the case of drying.
PL
W ramach pracy stworzono model matematyczny dla łączonego procesu polimeryzacji i suszenia prepolimeru poliakryloamidowego. Proponowany model umożliwia wyznaczenie zmiany stopnia konwersji monomeru, zawartość wilgoci polimeru, temperatury gazu i polimeru w suszarce oraz wymiary suszarki. Z użyciem modelu wyznaczono wartości parametrów technologicznych procesu, umożliwiając szybszy proces polimeryzacji w porównaniu z suszeniem w aparacie.
PL
Celem badań była ocena zależności zawartości akrylamidu od warunków przechowywania produktów mleczno-zbożowych dla dzieci. Badania przeprowadzono na 30 produktach zakupionych w sprzedaży detalicznej, przeznaczonych do żywienia dzieci w wieku od 6. do 12. miesiąca życia. Badano produkty świeże i przechowywane w temperaturach 8 i 25°C, po 3, 6, 9 i 12 miesiącach przechowywania. Zawartość AA oznaczono metodą wysokosprawnej chromatografii cieczowej z odwróconymi fazami z użyciem detektora z matrycą fotodiod (RP-HPLC-DAD). Stwierdzono dodatnią liniową korelację pomiędzy czasem i temperaturą przechowywania a stopniem redukcji akrylamidu. Wykazano, że wyższa temperatura przechowywania wywiera większy efekt na stopień redukcji AA w produktach. W końcowym okresie przechowywania w temperaturze 25°C zawartość akrylamidu była nawet o 60% niższa niż w produktach przed przechowywaniem.
EN
The aim of the study was to assess the effect of milk-cereal products for children storage on the acrylamide (AA) content. The study was conducted on 30 products purchased in retail, intended for feeding of children aged 6 to 12 months. Products were tested fresh and stored at temperatures of 8 and 25°C after 3, 6, 9 and 12 months of storage. The AA content was determined with high performance liquid chromatography technique using a reverse phase method with photodiode array detector (RP-HPLC-DAD). There was a positive linear correlation between time and temperature of storage and the level of acrylamide reduction. It was shown that higher storage temperature had a greater effect on the degree of AA reduction in the product. In the final period of storage at 25 ºC, acrylamide content was even up to 60% lower than in the products before storage.
PL
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), występuje też w dymie papierosowym. Akrylamid jest sklasyfikowany jako substancja: toksyczna, stwarzająca poważne zagrożenie zdrowia w następstwie długotrwałego narażenia przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Akrylamid jest mutagenem kategorii 2. (1B) i związkiem rakotwórczym kategorii 2. (1B), działa szkodliwie na rozrodczość, a także drażniąco na oczy i skórę, może wywoływać reakcję uczuleniową skóry.Produkcja akrylamidu jest wielkotonażowa. Stosowany jest głównie do: syntezy poliakrylamidów stosowanych w procesach oczyszczania ścieków, produkcji papieru, przerobie rud, wytwarzaniu polimerów winylowych oraz jako szczeliwo podczas budowy zapór wodnych i tuneli. Żel poliakrylamidowy wykorzystuje się w procesie elektroforezy (PAGE) powszechnie stosowanej w wielu laboratoriach. Zawodowe narażenie na akrylamid może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także stosowania związku w pracach budowlanych czy montażowych (np.: budowa tuneli, naprawa kanalizacji). Narażenie na akrylamid w Polsce występuje głównie w: zakładach chemicznych, farmaceutycznych oraz laboratoriach instytutów badawczych i uczelni wyższych.W Polsce w latach 2005-2010 ponad 2000 osób było narażonych na akrylamid (2525 osób w 2010 r.), z czego większość stanowiły kobiety. W latach 2011-2012 (wg danych GIS) nie było pracowników narażonych na stężenia akrylamidu w powietrzu, powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. powyżej 0,01 mg/m³. Akrylamid wykazuje działanie neurotoksyczne. Kliniczny obraz ostrego i przewlekłego zatrucia u ludzi jest podobny, a dominującymi są takie objawy neuropatii obwodowej, jak: utrata czucia, parestezje (drętwienie/mrowienie dłoni i stóp), osłabienie mięśniowe oraz osłabienie odruchów ścięgnistych. Mogą ponadto wystąpić drżenia rąk i chwiejny chód, zmniejszenie wrażliwości na światło i zdolność rozróżniania barw. Objawy neuropatii obwodowej obserwowano istotnie częściej u pracowników, gdy stężenia akrylamidu na stanowiskach pracy wynosiły powyżej 0,3 mg/m³. W badaniach monitoringu biologicznego (addukty akrylamid z hemoglobiną, AA-Hb) pracowników narażonych na akrylamid ustalono wartość NOAEL dla objawów drętwienia/mrowienia rąk/stóp na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu 0,1 mg/m³. U osób narażonych na akrylamid obserwowano także zapalenie skóry, objawiające się jej łuszczeniem, głównie na dłoniach. Na podstawie wyników badań toksyczności ostrej akrylamidu na zwierzętach wykazano, niezależnie od drogi narażenia, wystąpienie objawów neurotoksyczności. W dostępnym piśmiennictwie nie ma informacji o długoterminowych badaniach inhalacyjnych na zwierzętach. W badaniach podprzewlekłych i przewlekłych (po narażeniu drogą pokarmową lub dootrzewnową) obserwowano głównie neurotoksyczne działanie związku. Klinicznymi objawami narażenia zwierząt na akrylamid były zaburzenia koordynacji ruchowej i chodu oraz osłabienie kończyn tylnych prowadzące do paraliżu. U zwierząt w badaniach histopatologicznych stwierdzano głównie zwyrodnienie aksonów i komórek Schwanna w nerwach obwodowych i w rdzeniu kręgowym. Dla szczurów ustalono wartość NOAEL dla chronicznej neurotoksyczności na poziomie 0,5 mg/kg mc./ dzień. Akrylamid powodował zmiany patologiczne w narządach rozrodczych samców (zwyrodnienie nabłonka rozrodczego w jądrach i przewodach nasiennych, złuszczanie komórek rozrodczych w najądrzach oraz atrofię jąder). Standardowe testy na bakteriach nie wykazały zdolności akrylamidu do indukowania mutacji punktowych. Badanie mutacji genowych na komórkach ssaków w warunkach in vitro dały wynik niejednoznaczny. Niektórzy badacze przypuszczają, że aktywność akrylamidu może być związana z działaniem klastogennym (uszkodzenie chromosomu wyrażone jego złamaniem, co może prowadzić do zmiany organizacji struktury chromosomu wskutek nieprawidłowego połączenia się jego fragmentów w nową konfigurację). Akrylamid indukował aberracje chromosomowe, powodował poliploidalność i zaburzenia wrzeciona, co wskazuje na jego działanie aneuploidalne (obecność w komórce nieprawidłowej liczby chromosomów). Akrylamid powodował uszkodzenia DNA oraz nieplanową syntezę DNA, a także tworzył addukty z DNA oraz indukował wymianę chromatyd siostrzanych. Badania w warunkach in vivo dały dodatnie wyniki dla: aberracji chromosomowych, tworzenia mikrojąder i aneuploidii w szpiku kostnym, co sugeruje, że akrylamid jest bezpośrednio działającym mutagenem, ale prawdopodobnie powoduje skutek klastogenny, a nie mutacje genowe. Akrylamid wykazywał działanie mutagenne w komórkach rozrodczych samców. Wyniki dodatnie otrzymano dla skutków obejmujących: aberracje chromo-somowe, tworzenie mikrojąder, wymianę chromatyd siostrzanych, nieplanową syntezę DNA, dominujące mutacje letalne i dziedziczne translokacje. Za działanie mutagenne akrylamidu może być odpowiedzialny metabolit, glicydamid, który zarówno w badaniach przeprowadzonych w warunkach in vitro, jak in vivo powodował działanie mutagenne i genotoksyczne. Akrylamid działał rakotwórczo na szczury i myszy. U zwierząt w badaniach przewlekłych wykazano wzrost częstości występowania nowotworów u szczurów: tarczycy, jąder, gruczołów sutkowych, trzustki, serca, jamy ustnej i skóry, być może także ośrodkowego układu nerwowego (OUN) oraz u myszy: gruczołu Hardera, płuc, sutka, jajników oraz przedżołądka. Podobne działanie wykazywał także metabolit związku – glicydamid. Badania epidemiologiczne ludzi narażonych zawodowo, jak i środowiskowo (na akrylamid w diecie) nie dają jasnego obrazu zależności narażenia na związek a występowania nowotworów. W IARC zaklasyfikowano akrylamid do grupy 2A (substancja prawdopodobnie rakotwórcza dla ludzi), SCOEL zaliczył związek do grupy B rakotwórczości (genotoksyczne kancerogeny, dla których istniejące dane są niewystarczające do zastosowania modelu LNT). W badaniach na zwierzętach stwierdzono szkodliwy wpływ akrylamidu na płodność samców: zmniejszenie liczby plemników, zmiany morfologiczne nasienia, zaburzenia zachowań kopulacyjnych, dominujące mutacje letalne. U potomstwa samców narażonych na akrylamid stwierdzono zwiększenie resorpcji płodów i zmniejszenie liczebności miotów (skutek mutacji letalnych). Akrylamid nie wpływał na rozrodczość u samic. W badaniach toksyczności rozwojowej większość objawów u potomstwa obserwowano po dawkach akrylamidu powodujących toksyczność matczyną. Akrylamid dobrze wchłania się: drogą inhalacyjną, pokarmową (do 98% u szczurów, do 44% u myszy) i w mniejszym stopniu przez skórę; wiąże się specyficznie z krwinkami czerwonymi oraz spermatydami i przenika przez barierę łożyska. Akrylamid jest szybko metabolizowany przez sprzęganie z glutationem lub utlenianie przy udziale CYP2E1. Ten drugi szlak metaboliczny prowadzi do powstania epoksydowej pochodnej – glicydamidu (GA). Zarówno akrylamid, jak i GA wiążą się z hemoglobiną i/lub DNA. Akrylamid i jego metabolity ulegają wydalaniu z moczem. U ludzi po podaniu doustnym wydalało się z moczem w ciągu doby około 50% podanej dawki. Okres połowicznego wydalania oszacowano na około 3 h. Addukty hemoglobiny z akrylamidem i glicydamidem oraz metabolity obecne w moczu mogą służyć jako biomarkery narażenia na akrylamid. Za podstawę do zaproponowania wartości NDS akrylamidu przyjęto jego działanie neurotoksyczne na ludzi. U pracowników narażonych zawodowo na akrylamid o stężeniu przekraczającym 0,3 mg/m³ istotnie częściej występowało drętwienie dłoni i stóp niż w grupie pracowników narażonych na akrylamid o stężeniu poniżej 0,3 mg/m³. W celu ustalenia wartości NDS akrylamidu z wartości NOAEL 0,1 mg/m³ przyjęto jeden współczynnik niepewności związany z różnicami wrażliwości osobniczej u ludzi. Ilościowa ekstrapolacja wyników badań działania rakotwórczego związku u zwierząt na ludzi jest praktycznie niemożliwa, gdyż na powstawanie nowotworów obserwowanych u szczurów istotny wpływ mają czynniki specyficzne dla tego gatunku. Obliczona wartość NDS akrylamidu wynosi 0,05 mg/m³. Dla państw członkowskich UE istotne znaczenie mają wartości wiążące BOELV, a dla akrylamidu Komitet Doradczy ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH) przyjął w 2012 r. propozycję wartości BOELV w zakresie stężeń 0,07 ÷ 0,1 mg/m³. W Niemczech dla ryzyka akceptowanego 4-10-4 zaproponowano wartość dopuszczalną dla akrylamidu na poziomie 0,07 mg/m³. Biorąc pod uwagę powyższe ustalenia, zaproponowano przyjęcie stężenia 0,07 mg/m³ za wartość NDS akrylamidu. Ze względu na wchłanianie akrylamidu przez skórę związek oznakowano literami “Sk”. W badaniach pracowników narażonych na akrylamid stwierdzono wyraźną zależność między poziomem adduktów akrylamidu z hemoglobiną (N-(2-karbamoiloetylo)-waliny, AA-Hb) a występowaniem objawów ze strony obwodowego układu nerwowego. Dla objawów drętwienia/mrowienia stóp lub nóg (najwcześniej występujących) ustalono wartość NOAEL na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu około 0,1 mg/m³. Jest to obowiązująca wartości NDS dla akrylamidu w Polsce. Do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym dla akrylamidu we krwi przyjęto stężenia adduktów akrylamidu z hemoglobiną. W Niemczech przyjęto dwie wartości: BLW (biologischer leitwert – dopuszczalna wartość biologiczna) na poziomie 550 pmol AA-Val/g globiny oraz BAR (biologischer arbeitsstoff-referenzwert – biologiczna wartość referencyjna) na poziomie 50 pmol AA-Val/g globiny. W SCOEL ustalono wartość wyjściową BGV dla niepalącej populacji generalnej na poziomie 80 pmol AA-Val/g globiny. Żadna z tych wartości nie była porównywana z wartościami dopuszczalnych stężeń akrylamidu w powietrzu na stanowiskach pracy, których zarówno w SCOEL, jak i w Niemczech dla akrylamidu nie ustalono.Ze względu na dużą zmienność stężeń adduktów akrylamidu z hemoglobiną w populacji nienarażonej zawodowo na akrylamid, a także fakt, że pomiar adduktów z hemoglobiną jest metodą inwazyjną, wymagającą ponadto wyspecjalizowanej aparatury, zrezygnowano z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla akrylamidu.
EN
Acrylamide (AA) is a chemical compound that occurs at room temperature in the form of colorless crystals or flakes. It is not found in the natural environment, but it can be produced in thermal food processes (frying, baking). It is also present in cigarette smoke. Acrylamide is categorized as a toxic substance that poses substantial health risk after long-term exposure via inhalation, ingestion or skin contact. It is a category 2 (IB) mutagen and category 2 (IB) carcinogen. AA is known to induce adverse effects on reproduction, eye irritation and allergic skin reactions. Acrylamide is produced in multitonnage quantities. It is mostly used to synthesize polyacrylamides applied in wastewater treatment, manufacturing paper, processing ore, manufacturing vinyl polymers; it is also used as a grouting agent in constructing dams and tunnels. Polyacrylamide gel is utilized in the process of electrophoresis (PAGE) commonly used in numerous laboratories.Occupational exposure to acrylamide may occur during the production, processing and distribution of this compound and also during its application in construction and assembly works (e.g., construction of tunnels, sewer grouting work). In Poland occupational exposure to acrylamide is observed in chemical and pharmaceutical plants as well as in laboratories of research institutes and tertiary education schools. Over 2000 workers (mostly women) were exposed to this compound in the years 2005-2010 (2525 workers in 2010). According to the data produced by the Chief Sanitary Inspectorate in 2011 and 2012 there were no workers exposed to acrylamide at levels exceeding maximum allowable concentration (MAC) in the air, namely over 0.01 mg/m3. Acrylamide is found to exert neurotoxic effects. Clinical symptoms of acute and chronic poisoning are similar in humans, and symptoms of peripheral neuropathy, such as loss of sensation, paresthesia (numbness/ tingling in hands and feet), reduced muscle tone and diminished tendon reflexes are most common. In addition, hand tremors and unsteady gait, diminished sensitivity to light and inability to distinguish colors can be ob-served. Peripheral neuropathy symptoms were significantly more frequent in workers exposed to A A concentrations exceeding 0.3 mg/m3. Based on the biological monitoring (acrylamide adducts with hemoglobin, AA-Hb) of AA-exposed w’orkers no-observed adverse effect level (NOAEL) for numbness/tingling in hands/ feet has been set at 0.51 nmol AA-Hb/g globin. This value corresponds to the air AA concentration of 0.1 mg/m3. In w'orkers exposed to this compound dermatitis manifested by skin peeling, mostly in the palm, is also observed. The results of animal studies on acute AA toxicity have revealed symptoms of neurotoxicity, regardless of the exposure route. In the available literature there is no information about long-term inhalation studies on animals. Subchronic and chronic studies (after intraperitoneal and ingestion exposure) showed mainly neurotoxic effect of this compound. Clinical symptoms of animal AA exposure were manifested by incoordination, unsteady gait and diminished strength of hind limbs leading to paralysis. Histopathological examinations of animals most frequently showed degenerated axons and Schwann cells in the spinal cord and peripheral nerves. The NOAEL value for chronic neurotoxicity in rats has been set at 0.5 mg/kg b.w./day. Acrylamide induced male reproductive pathology (degeneration of the germinal epithelium in testes and seminiferous tubules, exfoliation of germ cells in the epididymis and atrophy of testes). Standard bacteria testing show'ed lack of AA ability to induce point mutations. The in vitro study of gene mutations on mammal cells yielded controversial results. Some researchers suppose that the AA activity’ may be associated with the clastogenic effect (a broken chromosome, which may lead to chromosome reorganization due to incorrect coupling of its fragments into a new configuration). Acryla- rnide induced chromosome aberrations, polyploidy and spindle disorders, which indicates its aneuploidal effect (the incorrect number of chromosomes in the cell). Acrylamide was responsible for DNA damage, unscheduled DNA synthesis, production of DNA adducts and induction of sister chromatid exchange. In vivo studies yielded positive results for chromosome aberration, production of micronuclei and aneu- ploidy in bone marrow, which suggests that acrylamide is a mutagen characterized by direct action, however, it is most likely that it exerts the clastogenic effect, but not gene mutations. Acrylamide showed the mutagenic effect in male reproductive cells. Positive results wrere obtained for such effects as chromosome aberra-tions, production of micronuclei, sister chromatid exchange, unscheduled DNA synthesis, dominant lethal mutations and hereditary trans-locations. It is likely that metabolite glycidam- ide, which exerts mutagenic and genotoxic effects in both in vivo and in vitro studies, is re-sponsible for the mutagenic effect of acrylamide. Acrylamide was found to show a carcinogenic effect in rats and mice. Animal chronic studies revealed an increased incidence of cancers of thyroid, testes, mammary7 glands, pancreas, heart, oral cavity and skin and maybe also of the central nervous system (CNS) in rats as well as cancers of the Harderian gland, lungs, mammary glands, ovaries and foreestomach in mice. Glicydamide, AA metabolite, showed a similar effect. Epidemiological studies of people occupationally and environmentally (diet) exposed to acrylamide have not provided explicit evidence of the relationship between AA exposure and cancer risk. Acrylamide has been classified into group 2A (the agent probably carcinogenic to humans) by the International Agency for Research on Cancer and to group B (genotoxic carcinogen, for which the existence of a threshold cannot be sufficiently supported at present) by the Scientific Committee on Occupational Exposure Limit (SCOEL). Animal studies have evidenced an adverse effect of acrylamide on male reproduction/fertility, including a reduced number of sperm cells, morphological changes in sperm, altered sexual behavior, dominant lethal mutations. An increased fetal resorption and decreased litter size (resulting from lethal mutations) wrere observed in the progeny of males exposed to acrylamide. No effect on re-production was found in females. In the studies of developmental toxicity the majority of symptoms were observed after administration of AA doses responsible for inducing maternal toxicity. Acrylamide is well absorbed via inhalation and ingestion (up to 98% in rats and up to 44% in mice), less absorbed through the skin; specifically bound to red blood cells and spermatids and permeats through the placental barrier. Acrylamide is rapidly metabolized through conjuga¬tion to glutathione or CYP2El-mediated oxidation. The latter metabolic pathway leads to the production of glycidamide (GA), an epoxy derivative. Both acrylamide and GA can bind to hemoglobin and/or DNA. Acrylamide and its metabolites are excreted in the urine. In humans 50% of an orally administered dose w7as excreted in the urine in 24 h. Excretion half-time is esti-mated at approximately 3 h. Hemoglobin ad¬ducts of acrylamide, glycidamide and urinary metabolites can serve as biomarkers of acrylamide exposure. The neurotoxic AA effect on humans has been adopted as the basis for the proposed MAC value of this compound. In workers occupationally exposed to acrylamide at the concentration exceeding 0.3 mg/m3 numbness in palms and feet was observed more frequently than in those exposed to lower concentrations (below 0.3 mg/m3). To establish a MAC value of acrylamide from the value of NO- AEL 0.1 mg/m3, one uncertainty coefficient, related to individual differences in human sensitivity, has been adopted. The qualitative extrapolation of results obtained from carcinogenicity studies in laboratory7 animals to humans is practically impossible since the development of cancers observed in rats is significantly influenced by species-specific factors. The calculated MAC value for acrylamide is 0.05 mg/m3. It should be stressed that in the European Union the binding occupational exposure level value (BOELV) is most important. In 2012 the Advisor} Committee for Safety and Health at Work (ACSH) accepted a proposal on BOELV for acrylamide concentration within the range of 0.07 - 0.1 mg/m3. Also in Germany MAC for acrylamide was proposed at 0.07 for acceptable risk 4 - 1CH. Bearing in mind the aforesaid stipulations MAC of 0.07 mg/m3 for acrylamide has finally been proposed. On account of acrylamide ab-sorption through the skin the standard value for the compound is labeled "Sk". Studies of w7orkers occupationally exposed to acrylamide showed explicitly a relationship between the level of acrylamide adducts with hemoglobin (N-(2- -carbamoylethyl)-valine, AA-Hb) and the occurrence of symptoms in the peripheral nervous system. For numbness/tingling in feet or legs (the most commonly observed symptoms) the NOAEL value has been set at 0.51 nmol AA-Hb/g glo- bin. This value corresponds to AA concentration in the air of 0.1 mg/m3. This is a binding MAC value for acrylamide in Poland. Concentrations of acrylamide adducts with hemoglobin have been adopted to estimate admissible value in the biological material for acrylamide in blood. In Germany two values have been adopted, BLW (biologischer leitwert, biological limit value) of 550 pmol AA-Val/g globin and BAR (biologischer arbeitsstoff-referenzetwert, biological reference value) of 50 pmol AA-Val/g globin. SCOEL adopted an initial BGV (biological guidance value) for the non-smoking general population, which was set at 80 pmol AA-Val/g globin. None of these values was comparable with MAC values for acrylamide in workplace air; neither SCOEL nor Germany established such values. In view of great variations in the concentration of acrylamide adducts with hemoglobin in the population non-occupationally exposed to acrylamide as well as the fact measuring hemoglobin adducts involves an invasive procedure that requires highly specialized equipment, the establishment of BEI for acrylamide has been abandoned.
PL
W artykule przedstawiono rodzaje związków tworzących się podczas reakcji nieenzymatycznego brunatnienia wybranych produktów spożywczych. Związki te oprócz kształtowania w żywności odpowiednich cech sensorycznych cechować się mogą właściwościami kancerogennymi bądź mutagennymi. W artykule opisano negatywne i pozytywne aspekty wynikające z przebiegu reakcji nieenzymatycznego brunatnienia.
EN
This paper presents the types of compounds formed during reaction of non-enzymatic browning of selected food products. These compounds in addition to give foods the relevant sensory attributes can be characterized by mutagenic or carcinogenic properties. The article describes the negative aspects arising from non-enzymatic browning reaction, and the benefits associated with the occurrence of these reactions.
EN
Starch graft copolymers have been obtained via grafting of acrylic monomers i.e. acrylamide (AAm) and acrylic acid (AA) during the reactive extrusion processes. 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as a radical initiator and N'N-methylenebisacrylamide (MBA), mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (trade name PETIA) and alkoxylated pentaerithritol acrylate (trade name Ebecryl 40) were applied as acrylic crosslinkers. The obtained materials were characterized by FTIR and their water sorption properties investigated using swelling (vol. %) and sorption (wt. %) tests. Sorption of water into these graft copolymer samples reached values of ca. 6 – 13 g of water per g of dry materials. It was also found that water sorption values were dependent on ratio of AAm and AA as well as on a type of the applied crosslinking agent.
PL
Akryloamid, powstający w żywności ogrzewanej w temperaturze powyżej 120°C, od 2002 r. jest przedmiotem wzmożonego zainteresowania świata nauki i przedstawicieli sektora spożywczego ze względu na jego szkodliwy wpływ na zdrowie człowieka. Prace badawcze prowadzone na całym świecie najwięcej uwagi poświęcają produktom ziemniaczanym i zbożowym poddawanym obróbce cieplnej. W artykule scharakteryzowano najważniejsze sposoby zmniejszania zawartości akryloamidu podejmowane w ramach strategii przedzbiorczej i pozbiorczej. Dokonano na podstawie literatury przeglądu aktualnych prac badawczych, które mogą znaleźć zastosowanie w praktycznych działaniach związanych ze zmniejszeniem zawartości akryloamidu w chipsach, frytkach, snackach, pieczywie i innych przetworach ziemniaczanych i zbożowych.
EN
Acrylamid (AA) formed in foodstuffs at temperature exceeding 120°C is recognized as a toxic substance for human organism and since 2002 is one of the most important fields of interest for scientists and food sector. Scientific studies all over the world are focused mostly on termically processed potato and cereal products. In the article the most important methods of acrylamid reduction including the preharvest and postharvest strategies were characterized. The paper is a literature review on actual scientific works which may be implemented to obtain of AA reduction in chips, French fries, snacks, breads and other potato and cereal products.
PL
Akryloamid powstaje podczas termicznego przetwarzania żywności wysokowęglowodanowej, przede wszystkim w produktach z ziemniaków i zbóż oraz w kawie. Ze względu na doniesienia o neurotoksycznym, geno-toksycznym i kancerogennym działaniu akryloamidu, obecność tego związku w żywności może stanowić zagrożenie dla zdrowia człowieka. W maju 2007 r. zostało opublikowane zalecenie Komisji UE "w sprawie monitorowania poziomów akryloamidu w żywności" (2007/331/EC), zgodnie z którym w latach 2007-2009 kraje członkowskie powinny kontrolować poziom akryloamidu w wybranych grupach środków spożywczych, a wyniki przekazywać co roku do Europejskiego Urzędu ds. Bezpieczeństwa Żywności (EFSA). Po tym okresie na podstawie uzyskanych wyników, zostaną podjęte dalsze działania, w tym również ewentualna decyzja dotycząca limitowania poziomu tego związku w żywności.
EN
Acrylamide is produced during thermal processing of food, first of all in potato and cereal products as well as in coffee. With regard to its demonstrated neurotoxic, genotoxic and carcinogenic effects, acrylamide may cause human`s health risk. In May 2007 the EU Commission Recommendation on monitoring of acrylamide levels in food (2007/331/EC) was published. According to that recommendation in 2007, 2008 and 2009 Member States should control acrylamide levels in the foodstuffs and should annually provide the monitoring data to European Food Standard Agency (EFSA). After that analytical data will be evaluated the appropriate activities will be undertaken including possible decision about limitation of the acrylamide content in foods.
EN
The separation of toxic acrylic monomers (mainly acrylamide) from some polymeric hydrogels of medical application was studied. It was found that “clean hydrogel” can be obtained after 4-6 days of washing with nonpyrogenic water. The quantity of monomeric acrylamide remained in the samples was controlled by a liquid chromatography method.
EN
The estimation of thermal effects occurring during the homopolymerization of acrylamide (AAm) and acrylic acid (AA) and their copolymerization in aqueous solutions at 40 oC in the presence of aluminum salt has been performed on the basis of DSC measurements. The presence of AA in the reaction system reduces the total heat effect of the copolymerization and indicates the reduction of the final conversion. The influence of the aluminum sulfate added in two concentrations (0.04 and 0.33 mol %) and changes in positions of polymerization peak maxima in comparison to the polymerization peaks of the neat monomers were registered. Aluminum sulfate causes retardation of AAm homopolymerization by shifting the position of exothermal peaks to longer polymerization times as compared to the neat homopolymerization reaction. On the other hand the aluminum salt seems to have a beneficial effect on the AA homopolymerization under the experimental conditions. The exothermal peaks of the monomer mixture copolymerizing in the presence of aluminum sulfate were found to be significantly shifted in comparison to those for AAm homopolymerization peaks in neat as well as in AAm/Al salt system.
PL
Metodą DSC przeprowadzono ocenę efektów cieplnych towarzyszących reakcji wolnorodnikowej homopolimeryzacji akryloamidu (AAm) oraz kwasu akrylowego (AA), a także ich kopolimeryzacji w wodnych roztworach w temperaturze 40 oC, w obecności soli glinu (rys. 1-3). Stwierdzono, że obecność AA w układach reakcyjnych zmniejsza całkowity efekt cieplny (ko)polimeryzacji, co wskazuje na mniejszą konwersję monomerów. Zbadano wpływ dwóch stężeń siarczanu glinu: 0,04 oraz 0,33 % mol; zaobserwowano przesunięcia w kierunku wyższych wartości czasu maksimów egzotermicznych pików odpowiadających kopolimeryzacji, w stosunku do położeń pików reakcji homopolimeryzacji AAm (tabela 1 i 3). Siarczan glinu wykazywał działanie opóźniające przebieg reakcji homopolimeryzacji AAm (tabela 1). Natomiast jego obecność (szczególnie przy wyższym stężeniu) wydaje się sprzyjać reakcji homopolimeryzacji AA (tabela 2), bowiem w warunkach testów DSC (40 oC) wodny roztwór tego monomeru (niezawierający soli) praktycznie nie ulega konwersji do polimeru.
PL
W pracy opisana jest synteza kationowego polielektrolitu rozpuszczalnego w wodzie, oparta na kopolimeryzacji akryloamidu z solą sulfonianową IV-rzędowej 2-metakryloksy-etylotrimetyloaminy. Ze względu na swoją budowę i właściwości kopolimery tego typu znalazły szerokie zastosowanie w technologii płuczek wiertniczych do kontroli, reologii, filtracji, ograniczenia dyspersji iłów i flokulacji. Podany jest dokładny opis przebiegu polireakcji, której produkty - różniące się procentowym udziałem komonomeru kationowego - poddane zostały charakteryzacji fizykochemicznej. Wyznaczono średnie masy cząsteczkowe metodą rozpraszania światła Mw średnie kwadraty promieni bezwładności, < RG2 >, graniczne liczby lepkościowe [h] oraz stałe sedymentacji, So dla wybranych kopolimerów metodą ultrawirowania analitycznego. Wprowadzono równanie korelujące graniczną liczbę lepkościową z wartościami średnich mas cząsteczkowych Mw według Marka-Houwinka.
EN
Subject of investigation was the synthesis of water-soluble cationic polyelectrolytes based on the copolymerization of 2-metacryl-1-ethyltrimetyIammonium sulfate (METAMS) and acrylamide (AAm). Due to the structure and specific properties, such polyelectrolytes have found a widespread application in the technology of drilling mud preparations, exhibiting good properties in preventing filtration, dispersion of clay materials, control of rheology and as flocculents. A detailed description of the polyreactions is given which resulted in products differing by the ratio of the cationic vs. neutral comonomer involved. Data of physicochemical characterizations are presented which concerns weight-average molecular masses, Mw, and mean squares of radu of inertion, < RG2 > determined by light scattering, as well as intrinsine viscosities, [n], and sedimentation constants, So, for selected items. An equation has been established which according to Mark-Houwink collerates intrinsine viscositie [n], with the average moleccular masses Mw.
PL
Badano proces rodnikowej polimeryzacji akryloamidu biegnący wg mechanizmu polimeryzacji z przeniesieniem atomu (ATRP) [równ. (1)] w roztworze wodnym, stosując 2-bromopropionian etylu jako inicjator i układ CuBr/amina jako katalizator. W przypadku stosowania aminy aromatycznej - bipirydylu (BiPy) - polimeryzacja biegła bardzo powoli i zatrzymywała się już w warunkach niewielkiej konwersji monomeru. Wobec aminy alifatycznej - pentametylodietylenotriaminy (PHDETA) - polimeryzacja przebiegała szybko do niemal całkowitego przereagowania monomeru (tabela 1). Analiza produktów polimeryzacji metodą MALDI TOF (rys. l-3) wykazała, że inicjowanie przebiega wyłącznie z udziałem stosowanego inicjatora, jednak polimery nie zawierają atomu bromu w grupie końcowej, co wskazuje na udział reakcji ubocznych. Aby otrzymać kopolimery blokowe, rodnikową polimeryzację akryloamidu inicjowano poli(tlenkiem etylenu) zawierającym na obu końcach łańcucha grupy 2-bromopropionianu etylu [MI-PEOX, równ. (2)]. Analiza metodą 1H-NMR wykazała, że cały makroinicjator zużywa się w procesie inicjowania (rys. 4). Na podstawie analizy produktów metodą GPC (rys. 5) ustalono jednak, że niecałkowita ilość makroinicjatora zostaje wbudowana do kopolimeru blokowego, a reakcji propagacji towarzyszy reakcja dezaktywacji katalizatora i reakcja terminacji. Tak więc, jakkolwiek otrzymano kopolimery blokowe typu ABA, nie udało się uzyskać pełnej kontroli nad przebiegiem kopolimeryzacji.
EN
Radical polymerization of acrylamide following the atom transfer radical polymerization (ATRP) mechanism (eqn. 1), was studied in aqueous solutions by using ethyl 2-bromopropionate as initiator and a CuBr-amine system as catalyst. With aromatic amine-bipirydyl (BiPy) used as ligand, polymerization was very slow and stopped at very low monomer conversions. With aliphatic amine-pentamethyldiethylenetriamine (PMDETA) used as ligand, polymerization was fast and proceeded until a practically complete conversion of AcAm was attained (Table 1). MALDI TOP analysis of the polymeryzates (Figs. 1-3) showed the polymerization to have been initiated exclusively by the initiator used, but the polymers did not contain a terminal bromine atom, a fact suggestive of side reactions. To prepare block copolymers, poly(ethylene oxide) terminated with ethyl 2-bromopropionate groupings on either end of the chain (MI-PEOX, eqn. 2) was used to initiate radical polymerization of acrylamide. 1H-NMR showed the macroinitiator to have been completely used in the polymerization reaction (Fig. 4). GPC analysis of the copolymerizates (Fig. 5) showed the macroinitiator to have been only partly incorporated into the block copolymer, and the propagation step to have been accompanied by deactivation of the catalyst and by the termination step. Thus, although desired ABA block copolymers were prepared, the control of the copolymerization reaction was incomplete.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.