Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Magnetic properties of silicon crystals implanted with manganese
EN
The influence of thermal treatment on magnetic properties of Si/Mn crystals grown by the Czochralski and by floating zone methods and implanted with Mn+ ions was studied by the SQUID magnetometry and electron spin resonance. Depending on thermal and hydrostatic pressure annealing conditions, three groups of Si/Mn samples were found: samples with only ferromagnetic phase, samples with ferromagnetic and paramagnetic contributions, and diamagnetic samples. The Curie temperature of ferromagnetic phase exceeds room temperature. The ESR and SQUID measurements suggest that Si/Mn implanted layer is magnetically inhomogeneous.
2
Content available remote Deep centers in InGaAs/InP layers grown by molecular beam epitaxy
EN
The deep level transient spectroscopy (DLTS) method was applied to study deep centers in lattici mismatched InGaAs/InP layers grown by molecular beam epitaxy. The composition and the strair state of the layers were determined using X-ray diffraction technique. Electron trap with therma; activation energy Ec - (0.06 + 0.03) eV and electron capture cross-section b(beta)e = 9.0x10-19 cm-2 have been detected in In0.524Ga0.476As layers being under tensile strain. Additionally two other centers with thermal activation energy Ec - (0.10 š 0.02) eV, and Ec - (0.48 š 0.02) eV have been revealed in In0.533Ga0.467As/InP layers subjected to small compressive strain. The electron capture cross-sections of these traps, determined from emission processes, are equal to be = 6.7x10-18 cm-2 and be= 1.6x10-14 cm-2, respectively. Due to temperature stresses, defect states in the In0.533Ga0.467As/InP layers are modified and the center Ec - (0.06 š 0.03) eV is created. This center is identical to that observed in In0.524Ga0.476gAs layers, as it has been confirmed by electron capture process measurements. The Ec - (0.06 š 0.03) eV state exhibits a point-like defect character.
EN
The effect of high temperature (HT) up to 1400 K and high pressure (HP) up to 1.1 GPa on Cz-Si co-implanted with He⁺ (energy, E = 50 KeV, dose, DHe = 5x10¹⁶ cm⁻²) and H₂⁺ (E = 135 KeV, DH 5x10¹⁶ cm⁻²), with almost overlapping implantation- disturbed layers, has been investigated. Numerous extended defects are created at HT and HP near the He and H concentration peaks, the overall structural perfection of annealed Si:He,H improves with HP. Oxygen gettering in the implantation- disturbed areas is much less pronounced under HP. The observed effects are related, among others, to decreased hydrogen out-diffusion and lowered dimensions of gas filled defects in Si:He,H treated under HP. Qualitative explanation of HP-mediated gettering of oxygen has been proposed.
EN
The effect of annealing under enhanced hydrostatic argon pressure (1.2 GPa) on the defect structure of thin GaAs:Be, InAs and AlGaAs and on the layers grown on GaAs substrates was investigated by X-ray diffraction methods. The strain state of the homoepitaxial GaAs:Be layers remained unchanged after the high pressure–high temperature (HP–HT) treatment, but additional defects were created on primarily existing structural irregularities. The treatment of AIIIBV heterostructures resulted in the changed strain state and dislocation density, which are dependent on the bulk modulus of the layer and substrate materials.
EN
GaMnAs is a semiconductor exhibiting low temperature (below 110 K) ferromagnetic phase transition caused by interactions of carriers (holes) with Mn spins. The paper presents properties of thin GaMnAs layers with Mn conaAs spacer. This dependence is presented for structures with two different thickness of GaMnAs layers - 12 and 16 molecular layers (34 Å and 45 Å). In both cases the ferromagnetism in GaMnAs/GaAs superlattice structures was not observed ofor GaAs spacer layer thickness bigger than 9 molecular layers (25 A). This is tentatively explained by the thickness dependent profile of concentration of carriers (holes) in GaMnAs.
PL
Celem pracy jest przedstawienie wybranych problemów materiałowych przemysłu elektronicznego związanych z wykorzystywaniem bardzo cienkich monokrystalicznych warstw półprzewodnikowych (InAs) i ogromnego w ostatnich latach zmniejszenia rozmiarów struktur półprzewodnikowych (tranzystorów, pamięci) wykonywanych w technologii krzemowej. Omówiono właściwości krystalograficzne i elektroniczne warstw epitaksjalnych InAs osadzanych przy pomocy metody MBE na podłożach z GaAs <100>, zaproponowano model dwuwarstwowy dla cienkich warstw InAs pozwalający obliczać FWHM i koncentrację nośników w nie domieszkowanym materiale w funkcji grubości. Przeprowadzono analizę własnych wyników i danych literaturowych. Zwrócono uwagę na zmniejszenie wymiarów geometrycznych struktur w technologii krzemowej podstawowej dla bieżących konstrukcji mikroukładów pamięciowych i procesorowych.
EN
The aim of paper was to present some problems in materials engineering connected with miniaturization of geometric dimensions of electronic structures. The examples are taken from InAs epitaxial layers and silicon technology. There are described crystallographic and electronic properties of InAs epitaxial layers deposited on insulating GaAs <100> wafers by MBE method after our results and from literature. It is proposed a novel two layer model after Petritz which allow to calculate crystalline (FWHM) and electronic (concentration, mobility) properties of any one undoped InAs layer with any one thickness. It was performed a comparative analysis of our results and those from literature. There is described the surprising decrease of semiconductor structures dimensions on silicon during last years. The problem was demonstrated on DRAM memories increase and transistors decrease as the components of microprocessor chips. Further development is concerned to silicon dioxide quality in very thin layers 1.2 nm thick.
PL
Opisano wytwarzanie gotowych do epitaksji podłoży z szerokoprzerwowych związków pólprzewodnikowych AII--BVI, to znaczy - uzyskiwanie super czystych pierwiastków, syntezę materiału źródłowego do krystalizacji, krystalizacja metodą transportu w fazie gazowej, wycinanie zorientowanych rentgenowsko płytek podłożowych i ich obróbka mechaniczna oraz metody przygotowania powierzchni "epi-ready", jak również budowa uproszczonej wersji stanowiska MBE do pokrywania płytek podłożowych warstwą homoepitaksjalnń. Przedstawiono wyniki charakteryzacji kryształów i płytek podłożowych.
EN
The technology of the "epi-ready" substrate plates (for MBE) of the wide-gap AII-BVI semiconductor compounds, i.e. - preparation of the ultra pure elements, synthesis of the source material, crystallization by the physical vapour transport technique, cutting of the oriented plates, mechano-chemical polishing and preparation of the "epi-ready" surface - is described, as well as the construction of a simplified version of the MBE setup for covering the substrate plates with the homoepitaxial layer. The results of the characterization of the substrate crystals and plates are presented.
EN
The structure of surfaces of InGaAs(InAs) layers grown on InP(001) and GaAs(001) by molecular beam epitaxy (MBE) was studied by high-resolution X-ray diffractometry. The reciprocal lattice mapping and the rocking cuvre technique were used to determine distribution of misfit dislocations in the layers. Directional dependence of dislocation density in InGaAs strained layers grown at two-dimensional (2D) grownth mode was observed. It was found that anisotropic distribution of dislocations in the InGaAs layers resulted from development via bending in the interface plane of dislocations present in the InP substrate. Simultaneously, homogeneous distribution of dislocations in relaxed InAs layers, grown on InP as well as GaAs substrates, has been detected. At the initial stage these epitaxial layers were grown due to tree-dimensional (3D) island mode. The reriprocal lattice maps confirm that coalescence of islands during the epitaxy generates dislocations that in turn homogeneously distribute in the layer. It seems that the growth mode rather than lattice mismatch determines density of dislocations in InAs epitaxial layers grown on InP and GaAs substrates. However, lattice mismatch influences relaxiation process in lattice-mismatched layers. Transport properties of relaxed InAs layers strongly depend on growth temperature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.