Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Praca dotyczy zagadnienia identyfikacji danych głębi z danymi intensywności w zastosowaniu do zadania jednoczesnej samolokalizacji i budowy mapy otoczenia (ang. Simultaneous Localization and Mapping – SLAM). Integracja danych przeprowadzona została dla czujnika głębi o rozdzielczości obrazu znacząco mniejszej od rozdzielczości obrazu RGB. W artykule sprawdzono dwie metody zwiększania rozdzielczości. Jedna z nich wykorzystuje interpolację biliniową obrazu głębi podczas jego przeskalowywania, a druga opiera się na fuzji danych głębi oraz intensywności. Przetestowano jakość działanie obu metod podwyższania rozdzielczości w zadaniu SLAM. Porównanie podejść nastąpiło na podstawie eksperymentu, w którym zebrano dane z dwóch czujników głębi wraz z kamerą RGB oraz zarejestrowano trajektorię przemieszczenia czujników.
EN
In this paper the method of combining depth data with intensity images in the Simultaneous Localization and Mapping (SLAM) task is described. Data integration was performed for the depth sensor with substantially lower resolution than the RGB image. In this paper two methods of upsampling were tested. First one is using pure interpolation during upsampling, and the second one is based on data fusion guided by RGB image. The quality of selected methods was examined in a SLAM task. The comparison of these two methods was done experimentally, where data from depth and RGB sensors were gathered and the trajectory of the sensor movement was recorded.
EN
The work presents the results of the examinations of silumin 226 as well as a silumin produced on its basis containing a W and Mo addition introduced in the amount of 0.1; 0.2; 0.3 and 0.4% of both elements simultaneously. Investigations of the crystallization process of the silumins by the TDA method were conducted. Also, a microscopic analysis of their microstructure was performed and their basic mechanical properties were determined. Microstructure tests were made on casts produced in an TDA sampler as well as by the pressure method. The investigations exhibited a change in the course of crystallization of the silumin containing 0.3 and 0.4% W and Mo with respect to silumin 226 and the silumin with the addition of 0.1 and 0.2%. The presence of additional phases which did not occur in the case of lower addition contents was established in the silumin containing 0.3-0.4% W and Mo, regardless of the applied casting technology. The tests showed the possibility of increasing the tensile strength Rm, the proof stress Rp0,2 and the unit elongation A of the silumin as a result of a simultaneous introduction of the W and Mo addition. The highest values of Rm, Rp0,2 and A were obtained in the silumins with the additions of these elements within the range of 0.1-0.2% each.
3
Content available Foot design for a hexapod walking robot
EN
This article describes the process of development of the robotic foot for the six-legged walking robot Messor. In order to allow the robot to negotiate uneven surfaces and to walk on a compliant ground, the foot includes the sensing device which provides information on contact forces between the foot and the ground. At first, the foot with single-axis force measurement unit is described. Next, design of the triaxial sensing device is shown. Knowledge gathered during development of the single-axis device was transferred to build a new foot with extended capabilities. In the article description of the manufactured real devices is given.
PL
Niniejszy artykuł opisuje proces rozwoju stopy dla sześcionożnego robota kroczącego Messor. Stopa ma wbudowane urządzenie do pomiaru sił kontaktu między stopą a podłożem. Dane te są wymagane do kroczenia po nierównym i podatnym gruncie. W artykule pokazane zostało jednoosiowe urządzenie pomiarowe. Następnie opisano czujnik trójosiowy bazujący na projekcie czujnika jednoosiowego. Artykuł prezentuje proces projektowania i opis rzeczywistego urządzenia.
4
Content available Tactile sensing for ground classification
EN
This paper describes the ground classification procedure for a six-legged walking robot. The terrain is classified according to the information gathered with the 6-DOF torque-force sensors. The statistical description of the obtained signals allow to obtain compact representation of the contact type for each 6-DOF component. Namely, the 4-element vector [variance, skewness, kurtosis, fifth moment] was used. Subsequently Discriminant Analysis was applied separately for classification of each component of the 6-DOF vector. The signal which gives the best classifica tion rate was established. The obtained result provides the information for the design of the new contact sensors for the robot feet.
EN
Nowadays there are more people living in the cities than in the countryside.With the growing number of multistorey buildings, which are built very fast, the number of possible collapses is rising. Rescue missions in ruins of such constructions pose a possible threat to the life of the rescuers. To avoid involving people in such missions mobile robots are used. The use of a six-legged robot in Urban Search and Rescue missions is proposed due to its static stability while walking on rough terrain. In this paper six-legged walking robot Messor is described. Its mechanical structure was designed in such a way, that negotiating obstacles met in urban space is possible. In order to perform such tasks as walking over rough terrain or climbing stairs the robot is equipped with significant number of on-board sensors. The control algorithms, which take advantage of mechanical structure were developed. At the beginning a mechanical structure of the robot is described. Next, the design of the robot control system architecture is considered. Then the robot sensory system is presented and afterward the application software is characterized.
6
Content available remote Supporting locomotive functions of a six-legged walking robot
EN
This paper presents a method for building a foothold selection module as well as methods for the stability check for a multi-legged walking robot. The foothold selection decision maker is shaped automatically, without expert knowledge. The robot learns how to select appropriate footholds by walking on rough terrain or by testing ground primitives. The gathered knowledge is then used to find a relation between slippages and the obtained local shape of the terrain, which is further employed to assess potential footholds. A new approach to function approximation is proposed. It uses the leastsquares fitting method, the Kolmogorov theorem and population-based optimization algorithms. A strategy for re-learning is proposed. The role of the decision support unit in the control system of the robot is presented. The importance of the stability check procedure is shown. A method of finding the stability region is described. Further improvements in the stability check procedure due to taking into account kinematic correction are reported. A description of the system for calculating static stability on-line is given. Methods for measuring stance forces are described. The measurement of stance forces facilitates the extended stability check procedure. The correctness of the method is proved by results obtained in a real environment on a real robot.
PL
Roboty kroczące, które znajdują zastosowanie w akcjach ratowniczych, korzystają z budowanej na bieżąco mapy terenu. Umieszczenie robota w nieznanym środowisku wiąże się z początkową nieznajomością takiej mapy. Do jej uzyskania konieczne jest pokonanie pewnej odległości zależnej od wymiarów geometrycznych robota oraz konfiguracji układu pomiarowego opartego o skaner laserowy 2D. Artykuł przedstawia rozwiązanie problemu poruszania się sześcionożnego robota kroczącego po nierównym terenie bez znajomości ukształtowania powierzchni. W tym celu robot wykorzystuje pomiar siły nacisku stóp na podłoże oraz akcelerometry i żyroskopy do pomiaru orientacji korpusu. W trakcie poruszania budowana jest mapa rastrowa terenu znajdującego się przed robotem, co pozwala w dalszym etapie misji na zastosowanie algorytmów kroczenia działających w oparciu o mapę.
EN
Walking robots used in search and rescue missions require a map of the terrain which is built on-line. However, in a real mission the map of the surrounding environment is unknown. In order to built such a map performing a few steps is needed. The distance of the movement depends on geometrical dimensions of the robot and the configuration of the laser range linder measurement system. This article shows a solution to the problem of walking on rough terrain without prior knowledge of the ground relief with a six-legged robot. To accomplish this task the robot uses measurements from the IMU and sensors of the force exerted on the ground. While walking a grid map of the terrain is built. Afterwards obtained data could be used for walking with an algorithm based on the grid map.
8
Content available remote Autonomiczny robot sześcionożny - rozwój konstrukcji i systemu sterowania
PL
Roboty kroczące są interesujące tak ze względów poznawczych jak i praktycznych, z powodu ich unikalnych możliwości lokomocyjnych oraz potencjalnych zastosowań w misjach ratowniczych, poszukiwawczych i rozpoznawczych odbywających się w terenie niedostępnym dla robotów kołowych. W niniejszej pracy poruszono zagadnienia związane z projektowaniem maszyny kroczącej w kontekście rozwoju istniejącej konstrukcji robota Ragno. Przedstawiono spostrzeżenia związane z działaniem układu mechanicznego oraz systemu sterowania. Wskazano niedostatki poprzednich rozwiązań oraz zaprezentowano sposoby, które pozwoliły na ich wyeliminowanie w nowym robocie.
EN
Walking machines are a very interesting class of mobile robots because of their unique locomotion capabilities in rough terrain. This high mobility makes a walking robot an attractive choice for search and rescue missions, in the areas unreachable for wheeled robots. This work describes a development of a new hexapod robot, based on the experiences from the development and use of the robot Ragno. The mechanical design and control architecture issues are characterised. The article shows also solutions to some problems encountered during the use of the earlier robot design.
EN
The architecture of the six legged robot is described in this paper. Robot kinematics for single leg and for the multi-legged platform is presented. For the control of the robot equipped with a number of sensors a three-layer control system has been designed. It consists of a host computer (in the first, teleoperation layer), of a single master microprocessor on the robot board (second layer) and of six microprocessors each of them for one leg (third layer). The communication between the first and the second layer is performed in duplex mode through the RS232 link via the Bluetooth channel, and between the second and the third control layer through the SPI bus. The robot sensing system consists of rotary potentiometers in each joint, of the leg as well as of a dual-axis accelerometer and gyroscope for platform orientation control. On board camera for remote vision is available.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.