Identyfikatory
Warianty tytułu
Efficiency of energy generation and use
Języki publikacji
Abstrakty
Artykuł prezentuje wybrane działania badawcze trzech wydziałów AGH w obszarze efektywności wytwarzania i użytkowania energii, ze szczególnym uwzględnieniem energetyki rozpro\szonej. Opisano w nim zagadnienia związane z procesami spalania, chłodzenia, zarządzania energią w budynkach oraz integracją OZE i magazynów energii. Uwzględniono również rozwójmetod oceny inteligencji energetycznejbudynków (SRI) oraz modelowanie systemów hybrydowych. Prace wspierają transformację energetyczną i rozwójnowoczesnych rozwiązań lokalnych.
This chapter presents selected research activities of three faculties of AGH University related to the efficiency of energy gen¬eration and use, with a particular focus on distributed energy systems. It covers combustion and cooling processes, energy management in buildings, and the integration of renewable energy sources with storage technologies. The development of methods for assessing smart readiness of buildings (SRI) and modelling of hybrid energy systems is also addressed. The work supports the energy transition and the implementation of modern local solutions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--33
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
- AGH Akademia Gorniczo-Hutnicza w Krakowie. Wydział Energetyki i Paliw
Bibliografia
- [1] Buchaniec S., Gnatowski M., Brus G. (2021), Integration of Classical Mathematical Modeling with an Artificial Neural Network for the Problems with Limited Dataset, „Energies" 14 (16): 5127.
- [2] Buczyński R., Kim R. (2022a), On Optimization of the Coke Oven Twin-Heating Flue Design Providing a Substantial Reduction of Nox Emissions. Part I: General Description, Validation of the Models and Interpretation of the Results, „Fuel" 323: 124194.
- [3] Buczyński R., Kim R. (2022b), On Optimization of the Coke Oven Twin-Heatng Flue Design Providing a Substantial Reduction of Nox Emissions. Part II: Optimized Designs for COG- And MG- Fired Units as Well as Operating Characteristics of the New Heating Flues, „Fuel" 323: 124193.
- [4] Buczyński R., Weber R., Kim R., Schwoppe P. (2016a), One-Dimensional Model of Heat-Recovery, Non-Recovery Coke Ovens. Part I: General Description and Hydraulic Network Sub-Model, „Fuel" 181: 1097-1114.
- [5] Buczyński R., Weber R., Kim R., Schwoppe P. (2016b), One-Dimensional Model of Heat-Recovery, Non-Recovery Coke Ovens. Part II: Coking-Bed Sub-Model, „Fuel" 181: 1115-1131.
- [6] Buczyński R., Weber R., Kim R., Schwoppe P. (2016c), One-Dimensional Model of Heat-Recovery, Non-Recovery Coke Ovens. Part III: Upper-Oven, Down-Comers and Sole-Flues, „Fuel" 181: 1132-1150.
- [7] Buczyński R., Weber R., Kim R., Schwoppe P. (2016d), One-Dimensional Model of Heat-Recovery, Non-Recovery Coke Ovens. Part IV: Nu-merical Simulations of the Industrial Plant, „Fuel" 181:1151-1161.
- [8] Buczyński R., Weber R., Kim R., Schwoppe P. (2018a), Investigation of the Heat-Recovery/Non-Recovery Coke Oven Operation Using a One-Dimensional Model, „Applied Thermal Engineering" 144: 170-180.
- [9] Buczyński R., Weber R., Kim R., Schwoppe P. (2018b), One-Dimensional Model of Heat-Recovery, Non-Recovery Coke Ovens. Part V: Coking-Bed Sub-Model Using an Inverse Procedure, „Fuel" 225: 443-459.
- [10] Buczyński R., Uryga-Bugajska I., Tokarski M. (2022), Recent Advances in Low-Gradient Combustion Modelling of Hydrogen Fuel Blends, „Fuel" 328: 125265.
- [11] CEWEP (2023), Industry Barometer Waste-to-Energy 2023, https:// www.cewep.eu/wp-content/uploads/2023/11/Industry-Barometer-Waste-to-Energy-2023.pdf [dostęp: 17.02.2024].
- [12] Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023on Energy Efficiency and Amending Regulation (EU) 2023/955 (recast), https://eur- lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX- :32023L1791 [dostęp: 17.02.2024].
- [13] Fornalik-Wajs E., Roszko A., Donizak J. (2020), Nanofluid Flow Driven by Thermal and Magnetic Forces - Experimental and Numerical Studies, „Energy" 201: 117658.
- [14] Gnatowski M., Buchaniec S., Brus G. (2023), The Prediction of the Polarization Curves of a Solid Oxide Fuel Cell Anode with an Artificial Neural Network Supported Numerical Simulation, „Inter-national Journal of Hydrogen Energy" 48 (31): 11823-11830.
- [15] Gurgul S., Kura T., Fornalik-Wajs E. (2020), Numerical Analysis of Tur-bulent Heat Transfer in the Case of Minijets Array, „Symmetry" 12 (11): 1785.
- [16] Gurgul S., Fornalik-Wajs E. (2024), Understanding of RANS-Modelled Impinging Jet Heat Transfer Trough Turbulence Kinetic Energy, Momentum and Energy Budgets, „Archives of Thermodynamics" 45 (3): 13-30.
- [17] Gurgul S., Fornalik-Wajs E., Skrzypek E., Skrzypek M., Cetnar J. (2022), Temperature Distribution in the Pre-Concept Research HTGR, [w:] W. Stanek (red.), CPOTE 2022: 7th International Conference on Contemporary Problems of Thermal Engineering: Towards Sustainable & Decarbonized Energy System, Warsaw, Poland, 20-23 September 2022 (conference proceedings), Politechnika Śląska, Gliwice: 321-322.
- [18] Jaszczur M. (2014), DNS, „Journal of Physics: Conference Series" 530(1): 012022.
- [19] Jaszczur M., Śliwa T. (2013), The Analysis of Long-Term Borehole Heat Exchanger System Exploitation, „Computer Assisted Methods in Engineering and Science" 20: 227-235.
- [20] Jaszczur M., Polepszyc I., Sapińska-Śliwa A., Gonet A. (2017), An Analysis of the Numerical Model Influence on the Ground Tempe¬rature Profile Determination, „Journal of Thermal Science" 26 (1): 1-7.
- [21] Jaszczur M., Teneta J., Styszko K., Hassan Q., Burzyńska P., Marcinek E., Łopian N. (2019a), The Field Experiments and Model of the Natural Dust Deposition Effects on Photovoltaic Module Efficiency, „Environmental Science and Pollution Research" 26 (9): 8402-8417.
- [22] Jaszczur M., Dudek M., Kolenda Z. (2019b), Thermodynamic Analysis of High Temperature Nuclear Reactor Coupled with Advanced Gas Turbine Combined Cycle, „Thermal Science" 23 (Suppl. 4): 1187-1197.
- [23] Kenjeres S., Fornalik-Wajs E., Wrobel W., Szmyd J.S. (2020), Inversion of Flow and Heat Transfer of the Paramagnetic Fluid in A Differentially Heated Cube, „International Journal of Heat and Mass Transfer" 151: 1-14.
- [24] Kleszcz S., Jaszczur M., Pawela B. (2023), An Analysis of the Periodic Counterflow Heat Exchanger for Air-To-Air Heat Recovery Venti-lators, „Energy Reports" 9: 77-85.
- [25] Komisja Europejska (2008), Guidelines on the Interpretation of the R1 Energy Efficiency Formula for Incineration Facilities Dedicated to the Processing of Municipal Solid Waste According to Annex II of Directive 2008/98/EC on Waste, https://ec.europa.eu/ environment/pdf/waste/framework/guidance.pdf [dostęp: 17.02.2024].
- [26] Komisja Europejska (2018), Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste (Text with EEA relevance), https:// eur-lex.europa.eu/eli/dir/2018/851/oj[dostęp: 17.02.2024].
- [27] Komisja Europejska (2019), Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal, C0M/2019/640/final, Bruksela, https://eur-lex.europa.eu/legal-content/EN/TX- T/?uri=CELEX:52019DC0640 [dostęp: 17.02.2024].
- [28] Komisja Europejska (2023), Commission Welcomes Completion of Key 'Fit For 55' Legislation, Putting EU on Track to Exceed 2030 Tar¬gets, https://ec.europa.eu/commission/presscorner/detail/ en/IP_23_4754 [dostęp: 17.02.2024].
- [29] Komisja Europejska (b.r.a), Operational Programme Infrastructure and Environment 2007-2013, https://trimis.ec.europa.eu/ programme/operational-programme-infrastructure-and-environment-2007-2013 [dostęp: 17.02.2024].
- [30] Komisja Europejska (b.r.b), Photovoltaic Geographical Information System (PVGIS), https://joint-research-centre.ec.europa.eu/ pvgis_en [dostęp: 10.03.2025].
- [31] Kura T., Fornalik-Wajs E., Wajs J., Kenjeres S. (2021), Curved Surface Minijet Impingement Phenomena Analysed with Z-F Turbulence Model, „Energies" 14 (7): 1-23.
- [32] Ma Y., Verbeke S., Protopapadaki Ch., Dourlens-Quaranta S. (2023), Assessment Package: Practical Guide SRI Calculation Framework v4.5, https://green-with-it.de/wp-content/ uploads/2024/08/Practical-Guide-SRI-calculation-frame- work-v4.5.pdf [dostęp: 10.12.2024].
- [33] Michalak P. (2022), Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building, „Energies" 15 (5): 1898.
- [34] Mika Ł., Radomska E. (2025), Solar Energy to Water Desalination: Long-Term Experimental Studies of Solar Still in Poland, „Energies" 18 (5): 1070.
- [35] Narowski P. (2008), Podstawy uproszczonej metody godzinowej obliczania ilości ciepła do ogrzewania i chłodzenia budynków, „Fizyka Budowli w Teorii i Praktyce" 3: 77-84.
- [36] Pajak M., Buchaniec S., Kimijima S., Szmyd J.S., Brus G. (2021), A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm, „International Journal of Hydrogen Energy" 46 (38): 20183¬20197.
- [37] Pajak M., Brus G., Kimijima S., Szmyd J.S. (2023), Coaxial Multi-Criteria Optimization of a Methane Steam Reforming Reactor for Effective Hydrogen Production and Thermal Management, „Energy and AI" 13: 100264.
- [38] Pawłowski P., Buchaniec S., Prokop T., Iwai H., Brus G. (2023), Microstructure Evolution of Solid Oxide Fuel Cell Anodes Characterized by Persistent Homology, „Energy and AI" 14: 100256.
- [39] Pleskacz L., Fornalik-Wajs E., Gurgul S. (2020), Magnetically Influenced Forced Convection in the Asymmetrically Heated Pipe - Heat Transfer and Flow Structure Analysis, „Symmetry" 5 (4): 1-19.
- [40] Poret F., Stengler E. (2022), The Climate Roadmap of the European Waste-to-Energy Sector. The Path to Carbon Negative, [w:] Proceeding of the 16th International Conference on Greenhouse Gas Control Technologies (GHGT-16), 23-24 October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cf m?abstract_ id=4284664 [dostęp: 17.02.2024].
- [41] Prokop T.A., Buchaniec S., Szmyd J., Brus G. (2024), A Parametric Analysis of the Long-Term Performance of a Solid Oxide Fuel Cell Anode, „International Journal of Heat and Fluid Flow" 110: 109583.
- [42] Radomska E., Mika Ł. (2023), Long-Term Modeling of the Performance of a Solar Still with Phase-Change Material, „Applied Thermal Engineering" 235 (July): 121339.
- [43] Radomska E., Mika L., Sztekler K., Kalawa W. (2021), Experimental Validation of the Thermal Processes Modeling in a Solar Still, „En-ergies" 14 (8): 2321.
- [44] Radomska E., Mika Ł., Sztekler K., Kalawa W., Lis Ł., Pielichowska K., Szumera M., Rutkowski P. (2023), Experimental and Theoretical Investigation of Single-Slope Passive Solar Still with Phase- Change Materials, „Energies" 16 (3): 1188.
- [45] Radomska E., Mika Ł., Boruta P., Bujok T. (2024), The Performance of Solar Still in Continental Climates: A Case Study in Poland, „Heat Transfer Engineering": 1-13.
- [46] Ray C., Jain R. (Eds.) (2011), Drinking Water Treatment. Focusing on Appropriate Technology and Sustainability, Springer Netherlands.
- [47] Sato Y., Moździerz M., Berent K., Brus G., Nomura M. (2024), Unveil Carbon Dioxide Recycling Potential Throughout Distributor-Type Membrane Reactor, „Journal of CO2 Utilization" 82: 102763.
- [48] Szemer M., Buchaniec S., Prokop T., Brus G. (2025), Topology-Infor¬med Machine Learning for Efficient Prediction of Solid Oxide Fuel Cell Electrode Polarization, „Energy and AI" 20: 100495.
- [49] Szmyd J.S., Jaszczur M., Ozoe H. (2002), Numerical Calculation of Spoke Pattern in Bridgman Top Seeding Convection, „Numerical Heat Transfer, Part A: Applications" 41 (6-7): 685-695.
- [50] Verbeke S., Aerts D., Reynders G., Ma Y., Waide P. (2020), Final Report on the Technical Support to the Development of a Smart Readiness Indicator for Buildings, European Commission, https:// op.europa.eu/en/publication-detail/-/publication/f9e6d89d- -fob1-11ea-b44f-01aa75ed71a1 [dostęp: 10.02.2025].
- [51] Wajs J., Mikielewicz D., Fornalik-Wajs E., Bajor M. (2019), High Performance Tubular Heat Exchanger with Minijet Heat Transfer Enhancement, „Heat Transfer Engineering" 40 (9-10): 772-783.
- [52] Wajs J., Kura T., Mikielewicz D., Fornalik-Wajs E., Mikielewicz J. (2022), Numerical Analysis of High Temperature Minichannel Heat Exchanger for Recuperative Microturbine System, „Energy" 238: 121683.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f8a304c-686c-4275-982d-9dafc3f226c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.