Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 271

Liczba wyników na stronie
first rewind previous Strona / 14 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  odzysk ciepła
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 14 next fast forward last
PL
Prawo Unii Europejskiej, strategia gospodarki o obiegu zamkniętym oraz międzynarodowe umowy i działania dotyczące ochrony atmosfery mają istotny wpływ także na branżę chłodniczą, klimatyzacyjną i pomp ciepła. W obszarze jej zainteresowań leży coraz większe wykorzystanie czynników chłodniczych pochodzących z recyklingu i zregenerowanych.
PL
W artykule opisano projekt rozwiązań instalacyjnych dla systemów wentylacji, ogrzewania i przygotowania ciepłej wody użytkowej w nowo wznoszonym budynku na obszarze objętym nadzorem konserwatorskim. W budynku zaprojektowano zmodyfikowany układ wentylacji mechanicznej wyciągowej z dodatkowym odzyskiem ciepła z powietrza usuwanego, stanowiącym dolne źródło dla pompy ciepła działającej na potrzeby podgrzewu ciepłej wody użytkowej. Zaproponowany układ stanowi kompromis między potrzebą zachowania typowego z perspektywy użytkownika układu wentylacji mieszkań a koniecznością spełnienia wymagań dotyczących efektywności energetycznej.
EN
The article describes the design of installation solutions for ventilation, heating, and domestic hot water systems in a newly erected building in the area under the conservator’s supervision. A modified mechanical exhaust ventilation system is designed in the building, with additional heat recovery from the exhaust air, which is the bottom source for the heat pump operating to heat domestic hot water. The proposed system is a compromise between the need to maintain a typical apartment ventilation system and the need to meet energy efficiency requirements.
PL
W artykule opisano projekt rozwiązań instalacyjnych dla systemów wentylacji, ogrzewania i przygotowania cieplej wody użytkowej w nowo wznoszonym budynku na obszarze objętym nadzorem konserwatorskim. W budynku zaprojektowano zmodyfikowany układ wentylacji mechanicznej wyciągowej z dodatkowym odzyskiem ciepła z powietrza usuwanego, stanowiącym dolne źródło dla pompy ciepła działającej na potrzeby podgrzewu ciepłej wody użytkowej. Zaproponowany układ stanowi kompromis między potrzebą zachowania typowego z perspektywy użytkownika układu wentylacji mieszkań a koniecznością spełnienia wymagań dotyczących efektywności energetycznej.
EN
The article describes the design of installation solutions for ventilation, heating, and domestic hot water systems in a newly erected building in the area under the conservator’s supervision. A modified mechanical exhaust ventilation system is designed in the building, with additional heat recovery from the exhaust air, which is the bottom source for the heat pump operating to heat domestic hot water. The proposed system is a compromise between the need to maintain a typical apartment ventilation system and the need to meet energy efficiency requirements.
PL
W gotowych projektach domów, także tych najmniejszych („na zgłoszenie"), oraz w domach jednorodzinnych, bliźniaczych i szeregowych oferowanych przez deweloperów coraz większą uwagę zwraca się na efektywność energetyczną, wysoki standard użytkowania i obniżenie rachunków za energię. Istotną rolę w spełnieniu tych wymagań odgrywają instalacje grzewcze i wentylacyjne - przede wszystkim pompy ciepła i wentylacja mechaniczna z odzyskiem ciepła.
PL
W dobie dekarbonizacji i zwiększania efektywności systemów HVAC trwają poszukiwania rozwiązań o wysokiej efektywności energetycznej oraz takich, które można zastosować jako decentralne urządzenia wentylacyjno-klimatyzacyjno-ogrzewcze w budynkach poddawanych renowacji. Prowadzone są prace nad nowymi technologiami i urządzeniami, które będą alternatywą dla układów z centralami i kanałami wentylacyjnymi.
PL
Wentylacja w zrównoważonych budynkach jednorodzinnych wymaga zastosowania nie tylko rozwiązań energooszczędnych, które czerpać będą maksymalnie z odnawialnych źródeł energii, ale muszą one również zapewnić prawidłowe funkcjonowanie obiektu w zmiennych warunkach zewnętrznych. Sprostać muszą one nie tylko dobowym i sezonowym zmianom otoczenia, ale również obserwowanym globalnie zmianom klimatycznym. Wymagania te spełniają gruntowe rurowe wymienniki ciepła (GWC). W poniższym artykule przeanalizowano eksperymentalne wyniki pracy tego urządzenia w polskich warunkach klimatycznych. Przeanalizowano okres jednego roku od września 2020 roku do końca sierpnia 2021 roku. Głównym celem pracy była nie tyle sama ocena ilości ciepła i chłodu pozyskanego z GWC, co ocena jego potencjału energetycznego w różnych układach wentylacji jednorodzinnego budynku mieszkalnego funkcjonujących w rzeczywistych, zmiennych warunkach otoczenia. W ramach badań rozpatrywano przypadek wentylacji grawitacyjnej i porównano pod względem zapotrzebowania energetycznego z trzema innymi przypadkami układów wentylacyjnych: wentylacją wyposażoną dodatkowo w GWC, wentylacją z rekuperacją i wysokosprawnym wymiennikiem ciepła oraz z wentylacją wyposażoną zarówno w GWC, jak i w rekuperację z odzyskiem ciepła.
EN
Ventilation systems in sustainable single-family homes require energy-efficient solutions that make optimal use of renewable energy sources and meet air quality and thermal comfort requirements in buildings. These systems should ensure a stable indoor environment and adequately respond to daily and seasonal fluctuations in temperature, as well as global climate change. Earth-to-air heat exchanges (EAHE) meet the above requirements. This article analyzes the performance of an EAHE in the Polish. The experiment covered a period of one year from the beginning of September 2020 to the end of August 2021. In addition to determining the heating and cooling loads, the main aim of the study was to evaluate the EAHE’s thermal performance in ventilation systems for single-family homes with different configurations under variable real-world conditions. Energy consumption in a building equipped with a natural ventilation system was compared with three other scenarios: a ventilation system coupled with an EAHE, a mechanical ventilation system with heat recovery and a high-efficiency heat exchanger, and a mechanical ventilation system with both an EAHE and heat recovery.
EN
Waste heat plays a significant role in obtaining the 4th and 5th generation of District Heating (DH) System in cities. This article presents the possibilities of integrating selected waste heat emitters into DH, with the objective of meeting the demand for heat for the selected residential area (approx. 4000 inhabitants) in the city of Gliwice (180 000 inhabitants). The total heating demand of the studied area was estimated at 19 800 GJ including both space heating and domestic hot water. The maximum thermal power was estimated at approx. 2.45 MW. The demand was calculated on the basis of registered metering values for individual buildings which were processed and summarized due to the lack of collective meters for the district. A detailed data classification, correction and completion procedure was elaborated to deal with non-uniform and low-quality data registration. Two industrial objects with waste heat generation were examined to be integrated with the local DH network. The waste heat generation potential equals 9.0 MW for plant #1 and 0.9 MW for plant #2. Apart from the constant generation declared by the industrial entities, realistic profiles including possible shaft-work and maintenance periods were created. It has been shown that the total heat demand for selected residential areas can be covered by integrating waste heat into the current DH network. Depending on the waste heat generation profile, the local area heat demand can be covered entirely or to a large degree (coverage factor ranges from 72 to 100%). The waste heat utilization factor ranges from 6.3 to 8.3%. To manage the remaining waste heat potential, it is required to build additional district heating pipelines and nodes connecting to the existing network to receive an additional 7.45 MW thermal power. The potential of waste heat recovery is significant at the scale of a medium sized city: integrating two large industrial emitters allows up to 13% decarbonization of heats production in the local district heating plan.
8
Content available remote Sposoby odzysku ciepła w centralach rekuperacyjnych
PL
Dla inwestora parametrem równie ważnym jak wydajność centrali rekuperacyjnej jest jej sprawność odzysku ciepła. Na cechę tę wpływa nie tylko sprawność temperaturowa samego wymiennika, ale także zużycie energii przez pozostałe komponenty centrali, tj. wentylatory i zabezpieczenia przeciwzamrożeniowe.
9
Content available remote Zastosowanie pomp ciepła w wentylacji i klimatyzacji
PL
Odzysk ciepła ze ścieków szarych jest atrakcyjnym źródłem energii, podnoszącym efektywność układu przygotowania cieplej wody użytkowej. Sprawność temperaturowa odzysku ciepła w poziomych wymiennikach płytowych zależy od warunków eksploatacyjnych opisanych temperaturą oraz wielkością, proporcją i jednoczesnością strumieni ścieków i wody użytkowej. Zbadano parametry pracy poziomego wymiennika płytowego do odzysku ciepła ze ścieków szarych dla dwóch wariantów podłączenia hydraulicznego, zmiennych proporcji strumieni po stronie gorącej i zimnej wymiennika oraz różnych temperatur ścieków szarych. Sporządzono rozszerzoną charakterystykę roboczą wymiennika, umożliwiającą szacowanie wyników energetycznych w szerokim zakresie warunkach eksploatacyjnych wymiennika. Badania przeprowadzono w symulowanych laboratoryjnie warunkach pracy typowych dla kąpieli prysznicowej. Strumienie badawcze wynosiły około 50, 100 1 150% normatywnego wypływu z głowicy prysznica, a temperatura ścieków szarych zmieniała się od 30 do 50°C odzwierciedlając kąpiele użytkowników o różnych preferencjach. Uzyskane w badaniach wyniki sprawności temperaturowej porównano z wartościami prezentowanymi w literaturze dla innych urządzeń do odzysku ciepła ze ścieków szarych, zarówno wymienników pionowych, jak i poziomych.
EN
Heat recovery from gray wastewater is an attractive energy source that increases the efficiency of the domestic hot water preparation system. The temperature effectiveness of heat recovery in horizontal heat exchangers depends on the operating conditions described by the temperature, size, proportion and simultaneity flows of drain water and utility. Operating characteristics of a horizontal plate heat exchanger for heat recovery from gray wastewater were tested for two variants of hydraulic connection, variable proportions of streams on the hot and cold sides of the exchanger, and different temperatures of gray wastewater. Extended operating characteristics of the heat exchanger were prepared, enabling the estimation of energy results in a wide range of operating conditions of the heat exchanger. The tests were carried out in simulated laboratory working conditions typical for a shower. The test flows were 50, 100 and 150% of the design flow rate from the shower, and the hot water temperature varied from 30 to 50°C, reflecting the baths of users with different preferences. The results of the temperature effectiveness obtained in the tests were compared with the values presented in the literature for other drain water heat recovery units, both in vertical and horizontal applications.
PL
Woda grzewcza do zaopatrzenia w ciepłą wodę stanowi około 20% całkowitego zużycia energii w standardowym domu, a większość obciążenia przypada na wodę grzewczą do kąpieli lub prysznica. Koszt cieplej wody z reguły zajmuje drugie miejsce pod względem kosztów mieszkania i usług komunalnych w budynkach mieszkalnych, ustępując jedynie kosztom ogrzewania. Badania wykazały, że do zabiegów higienicznych człowiek potrzebuje 1/10 wody użytej pod prysznicem. Tak wiec około 90% cieplej wody dostarczanej do baterii prysznicowej jest odprowadzane do kanalizacji. Ponowne wykorzystanie energii ze ścieków pozwoli zaoszczędzić energie cieplną i zmniejszy całkowity koszt cieplej wody. Artykuł poświęcony jest badaniu wykorzystania odzysku ciepła ze ścieków szarych do zwiększenia efektywności energetycznej budynków.
EN
Heating water for hot water supply accounts for about 20% of a standard home's total energy consumption, with most of the load going to heating water for bathing or showering. The cost of hot water generally ranks second in terms of housing and utilities in residential buildings, second only to the cost of heating. Studies have shown that a person needs 1/10 of the water used in a shower for hygiene procedures. Thus, about 90% of the hot water supplied to the shower tap is discharged into the sewage system. Reusing energy from wastewater will save heat energy and reduce the total cost of hot water. The article is devoted to studying the use of heat recovery from domestic wastewater to increase the energy efficiency of buildings.
PL
Odzysk ciepła odpadowego z przemysłu jest jednym z najbardziej pożądanych kierunków transformacji ciepłownictwa łączącym cele minimalizacji nakładów z maksymalizacją efektywności. Jednak zarówno w Polsce jak i w Unii Europejskiej niewiele jest przykładów wykorzystania ciepła odpadowego z przemysłu zapewne z uwagi na bariery techniczne oraz formalno¬prawne. Jednak największą barierę stanowi brak zrozumienia odmiennych celów jakie przeświecają przedsiębiorstwom ciepłowniczym oraz przedsiębiorstwom przemysłowym. Celem przemysłu jest wytwarzanie dóbr, w którą to działalność zainwestowano kapitał. Ciepło odpadowe jest jedynie okazją do dodatkowego przychodu, która to okazja nie może generować ryzyka dodatkowych kosztów lub strat. Przedsiębiorstwa ciepłownicze patrzą na współpracę przez pryzmat priorytetu mocy dyspozycyjnej i stabilności dostaw, która w przypadku ciepła przemysłowego nie jest możliwa do osiągnięcia. Do tego w Polsce funkcjonuje nieprzyjazna podejmowaniu ryzyka odzyskiwania ciepła odpadowego regulacja. Jednak są przedsiębiorstwa, z doświadczenia których w odzyskiwaniu ciepła odpadowego można korzystać aby znieść istniejące bariery z korzyścią dla wszystkich. Przedsiębiorstwo Energetyki Cieplnej w Ciechanowie Sp. z o.o. (PEC Ciechanów) wykorzystuje ciepło odpadowego z przemysłu od ponad dwudziestu lat. W sumie od roku 2011 w PEC Ciechanów wykorzystano ponad 522 tys. GJ ciepła odpadowego z przemysłu do zasilania sieci ciepłowniczej. W artykule przedstawione są wady oraz zalety ciepła odpadowego z przemysłu oraz możliwości i bariery jakie związane są z podejmowaniem współpracy z przemysłem w zakresie wykorzystania ciepła odpadowego na potrzeby ciepła systemowego.
EN
Recovery of waste heat from industry is one of the main priority directions of transformation of the heating sector, combining the objectives of minimizing inputs with maximizing efficiency. However, both in Poland and in the European Union, there are few examples of the use of waste heat from industry, probably due to technical and formal and legal barriers. However, the biggest barrier is the lack of understanding of the different goals of heating companies and industrial companies. The purpose of industry is to produce goods in which capital has been invested. Waste heat is only an opportunity for additional income, which must not generate the risk of additional costs or losses. Heating companies look at cooperation through the prism of the priority of available power and stability of supplies, which is impossible to achieve in the case of industrial heat. In addition, in Poland there is a regulation unfriendly to taking the risk of waste heat recovery. However, there are companies whose experience in waste heat recovery can be used to remove existing barriers for the benefit of all. Przedsiębiorstwo Energetyki Cieplnej w Ciechanowie Sp. z o.o. (PEC Ciechanów) has been using waste heat from industry for over twenty years. In total, since 2011, PEC Ciechanów has used over 522 thousand. GJ of industrial waste heat to supply the district heating system. The article presents the advantages and disadvantages of waste heat from industry as well as the opportunities and barriers associated with establishing cooperation with industry in the field of using waste heat for the needs of system heat.
PL
W artykule przedstawiono obowiązujące przepisy i regulacje obejmujące wymagania dotyczące sprawności stosowanych urządzeń odzyskujących ciepło. Dokonano przeglądu literatury poświęconego sposobom podwyższania skuteczności funkcjonowania wymienników ciepła. Omówiono budowę centrali wentylacyjnej wyposażonej w obrotowy wymiennik ciepła. Szczegółowo przedstawiono budowę i zasadę działania sekcji odzyskiwania ciepła. Scharakteryzowano różne warianty wysokości falistego wypełnienia obrotowych wymienników ciepła. Cel badań: Przeprowadzenie analizy wpływu wysokości fal wypełnienia na sprawność badanego wymiennika ciepła. Zwrócenie uwagi na wytworzone wewnątrz urządzenia aktywne strefy wymiany ciepła i masy. Wyznaczenie efektywności wymiennika ciepła umożliwiającej jego bezawaryjną eksploatację w warunkach okresu zimowego. Metody: W metodyce postępowania wykorzystano oryginalny model matematyczny wymiany ciepła i masy. Na podstawie modelu przy zastosowaniu środowiska programowania Pascal opracowano program komputerowy. Wyniki pozytywnej walidacji programu umożliwiły przeprowadzanie symulacji działania obrotowych wymienników ciepła. W programie zdefiniowano wymiary geometryczne urządzenia oraz termodynamiczne parametry obydwu strumieni powietrza. Badania numeryczne przeprowadzono w warunkach ujemnych wartości temperatury powietrza zewnętrznego. Wnioski i odniesienie do zastosowań praktycznych: Na podstawie uzyskanych wyników stwierdzono, że przy mniejszych rozmiarach falistego wypełnienia odnotowano wyższe wartości efektywności urządzenia. Większy rozmiar fal wypełnienia umożliwił natomiast większe możliwości tworzenia stref związanych z mokrą wymianą ciepła kosztem zmniejszonej powierzchni suchej. Stwierdzona obecność obszarów akumulacji wilgoci stanowi istotny problem w funkcjonowaniu obrotowych wymienników ciepła. Kluczem do rozwiązania tego problemu jest wilgotność względna powietrza wywiewanego, która odgrywa ważną rolę w tworzeniu tych stref. Bezpieczna eksploatacja obrotowego wymiennika ciepła powyżej pewnej wartości granicznej wilgotności względnej wymaga redukcji jego sprawności. Z racji tego wynika również możliwa do zmierzenia progowa temperatura powietrza usuwanego (opuszczającego wymiennik ciepła), która powinna być wyższa od 0°C. Kompletna eliminacja stref akumulacji wilgoci wymaga redukcji efektywności urządzenia do zbliżonej wartości (np. przy wilgotności względnej powietrza wywiewanego φ2we=30%) równej ε(t)=0,568 niezależnie od wysokości zastosowanych płyt falistych. Dalsze wyniki optymalizacyjne umożliwią przeprowadzenie działań zmierzających do racjonalnego wykorzystania nadmiaru strumienia ciepła przejścia fazowego obecnego w strefie akumulacji wodnej.
EN
The paper presents applicable laws and regulations containing efficiency requirements for heat recovery equipment in use. A literature review was conducted on ways to increase the efficiency of heat exchangers. The construction of an air handling unit equipped with a rotary heat exchanger is discussed. The construction and principle of operation of the heat recovery section are presented in detail. Different variants of the height of the corrugated matrix of rotary heat exchangers have been characterized. Aim: Analysis of the effect of matrix wave height on the efficiency of the heat exchanger under study. Paying attention to the zones of active heat and mass transfer generated inside the device. Determine the effectiveness of the heat exchanger for trouble-free operation during the winter. Methods: The methodology used the original mathematical model of heat and mass transfer. A computer program was developed based on the model using the Pascal programming environment. The results of the program’s positive validation made it possible to simulate the operation of rotary heat exchangers. The program defines the geometric dimensions of the device and the thermodynamic parameters of the two airflows. Numerical tests were carried out under low outdoor air temperature conditions. Conclusions and relevance to practice: Based on the results, it was found that higher device effectiveness values were noted with smaller corrugated matrix sizes. In contrast, the larger size of the matrix waves allowed greater opportunities to create zones associated with wet heat transfer at the expense of a reduced dry area. The identified presence of areas of moisture accumulation is a significant problem in the operation of rotary heat exchangers. The key to solving this problem is the relative humidity of the exhaust air, which plays an important role in creating these zones. Safe operation of the rotary heat exchanger above a certain relative humidity limit requires a reduction in its efficiency. For this reason, there is also a measurable threshold temperature of the exhaust air (leaving the heat exchanger), which should be higher than 0°C. The complete elimination of moisture accumulation zones requires the reduction of device effectiveness to an approximate value (e.g., with return air relative humidity φ2we=30%) equal to ε(t)=0.568, regardless of the height of the corrugated sheets used. Further optimization results will make it possible to carry out measures to rationally utilize the excess heat flux of the phase transition present in the water accumulation zone.
PL
W pracy przedstawiono analizę efektywności energetycznej układu składającego się ze sprężarki połączonej na jednym wale z rozprężarką pozwalającego na wykorzystanie go do celów grzewczo-chłodzących. Dla celów analizy zbudowano model matematyczny, który posłużył do wykonania obliczeń wariantowych. Uzyskane wyniki potwierdziły możliwość wykorzystania analizowanego układu dla celów ogrzewania i chłodzenia budynków, a jego główną zaletą oprócz wysokiego wskaźnika COP będzie fakt wykorzystania jako czynnika grzewczego i chłodniczego zwykłego powietrza atmosferycznego.
EN
The work presents an analysis of the energy efficiency of a system consisting of a compressor connected on one shaft with an expander, allowing it to be used for heating and cooling purposes. For the purposes of the analysis, a mathematical model was constructed, which was used for performing various calculations. The obtained results confirmed the possibility of using the analyzed system for heating and cooling buildings. Its main advantage, in addition to a high coefficient of performance (COP), will be the utilization of ordinary atmospheric air as a heating and cooling medium.
PL
Centra przetwarzania danych stały się nieodzownym elementem nowoczesnego świata, a całkowita moc elektryczna do ich zasilania szacowana w 2023 roku to ponad 7,4 GW. Z punktu widzenia projektanta instalacji serwery to w uproszczeniu (bardzo) duże grzałki elektryczne - 99% zasilającej je energii elektrycznej zamienia się w ciepło. Idea wykorzystania tego ciepła odpadowego z serwerowni od lat rozpala wyobraźnię inżynierów. Czy w obecnych warunkach odzysk ciepła nadal może być traktowany jako ciekawy dodatek do projektu, czy też - w świetle wysiłków związanych ze zrównoważonym rozwojem - powinien się stać jego obowiązkowym elementem? Na to pytanie postaram się odpowiedzieć, analizując historię odzysku ciepła w klimatyzacji precyzyjnej oraz obecne trendy w tym zakresie.
PL
Wymagania dla nowych budynków w zakresie izolacji termicznej oraz sprawności odzysku ciepła z powietrza wentylacyjnego są na tyle wysokie, że pole do dalszych działań jest niewielkie i należy go szukać w sterowaniu wentylacją reagującą na rzeczywiste, zmienne zapotrzebowanie oraz liczbę przebywających w budynku osób. Z kolei w budynkach istniejących, które będą poddawane modernizacji, możliwości działania w kwestii poprawy wentylacji ograniczają m.in. przepisy nienadążające za rozwojem techniki.
PL
Na kondycję przedsiębiorstw duży wpływ ma ich konkurencyjność, którą można zwiększyć nie tylko dzięki jakości i innowacyjności, ale także taniej i dostępnej energii obniżającej koszty produkcji. Kryzys energetyczny i wojna pokazały, jak ważna jest energoefektywność ogrzewania i wentylacji oraz wykorzystanie energii odnawialnej w obiektach produkcyjnych i magazynowych.
PL
Najtańszą i najmniej emisyjną energią jest ta, której nie zużywamy. Tuż za nią plasuje się ciepło odpadowe, czyli nieuniknione straty ciepła związane ze specyfiką procesów produkcyjnych. Ciepło odpadowe nie jest obarczone nakładem energii pierwotnej i emisją gazów cieplarnianych. Jest natomiast atrakcyjne ekonomicznie, zwłaszcza w dobie kryzysu energetycznego i wysokich cen energii. Rejestrowanie przemysłowych i komercyjnych źródeł ciepła odpadowego i ich potencjału daje podstawę do ich właściwego lokalnego wykorzystania w miejskich systemach ciepłowniczych.
PL
W artykule przedstawiono nowoczesne systemy instalacyjne, ze szczególnym uwzględnieniem wentylacji i klimatyzacji. Przedstawiane systemy są najczęściej stosowanymi rozwiązaniami w budynkach proekologicznych, czyli takich, które są poddawane certyfikacji ekologicznej i muszą spełniać odpowiednie kryteria. Przedstawiono ocenę nowoczesnych systemów instalacyjnych wraz z ich klasyfikacją. Szczegółowo przedstawiono wentylacje zmienno- i stałostrumieniowe, klimatyzatory i klimakonwektory. Poruszono również niezbędny element dla budynku proekologicznego, jakim jest odzysk ciepła z systemów.
EN
In the article modern installation systems, with particular reference to the ventilation and the air-conditioning was presented. Introduced systems are most often applied solutions in ecological buildings, which are subjected to the ecological certification and must fulfil suitable criteria. The estimation of modern installation systems together with their classification was represented. In detail was introduced ventilations with variable and constant-stream-oriented, air conditioners and fan coils. The indispensable element for the ecological building, which is the warm salvage of systems was also presented.
first rewind previous Strona / 14 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.