The superplastic forming and diffusion bonding (SPF/DB) process was investigated for the manufacture of the TC31 titanium alloy X-type lattice structure. The finite element (FE) model was used to simulate the SPF process and compression behavior of the X-type lattice structure, and the deformation and compression failure modes were analyzed. A theoretical model was revised to predict the structural compressive strength. The results showed that the material processed by heat treatment still had great plasticity with the maximum elongation of 142.5% at 920 °C. The bonding rate, thinning rate and shear strength of the TC31 alloy joint bonded at 920 °C/3 MPa/60 min were 97.1%, 5.56% and 364 MPa, respectively, which indicated it was suitable for the X-type lattice truss structure to formed in the process parameter. Based on the result of the fundamental test and FE simulation, the X-type lattice structure could be fabricated by DB at 920 °C/3 MPa/60 min and SPF at 920 °C with a target strain rate of 0.001 s-1. Thickness measurements indicated that the area with a maximum thinning rate of 32.9% was located at the transition filet between the bonding areas and the ribs. The surface compressive strength of the X-type lattice structure was 1.51 MPa with a relative density of 0.015 when rib width was 5 mm, and the rib plastic buckling was considered as the failure mode of the TC31 titanium alloy lattice structure formed by SPF/DB. The surface compressive strength of the simulation results is 1.59 MPa with an error of 5.3%. The decrease of material properties and rib local thinning affect the accuracy of the theoretical predictions, and the revised theoretical result is 1.52 MPa with an error of 0.7%.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created. Using the finite element analysis, a static compression test was performed to assess the effective Young modulus of each tested sample. Also, two important metrics of each sample were assessed: relative density and surface area. Each new designed 3D scaffold sample was analyzed by considering two types of material properties: metal alloy properties (Ti-6Al-4V) and ABS polymer properties. Numerical analysis results of this study confirm that 3D scaffold used to design a periodic structure, either based on interconnected beams (A, B, C, D, E and F units) or made by removing regular shapes from base solid cubes (G, H, I units), can be refined to obtain mechanical properties similar to the ones of trabecular bone tissue. Experimental validation was performed on seven scaffolds (A, B, C, D, E, F and H units) printed from ABS material without any support materials by using Fused Deposition Modeling (FMD) technology. Results of experimental Young modulus of each printed scaffold are also presented and discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.