Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gate stack
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Experiments presented in this work are a summary of the study that examines the possibility of fabrication of oxynitride layers for Si structures by nitrogen implantation from rf plasma only or nitrogen implantation from rf plasma followed immediately by plasma oxidation process. The obtained layers were characterized by means of: ellipsometry, XPS and ULE-SIMS. The results of electrical characterization of NMOS Al-gate test structures fabricated with the investigated layers used as gate dielectric, are also discussed.
EN
The goal of this work was to study nitrogen implantation from plasma with the aim of applying it in dual gate oxide technology and to examine the influence of the rf power of plasma and that of oxidation type. The obtained structures were examined by means of ellipsometry, SIMS and electrical characterization methods.
EN
The current trend in scaling transistor gate length below 60 nm is posing great challenges both related to process technology and circuit/system design. From the process technology point of view it is becoming increasingly difficult to continue scaling in traditional way due to fundamental limitations like resolution, quantum effects or random fluctuations. In turn, this has an important impact on electrical device specifications especially leakage current and the circuit power dissipation.
4
Content available Ultrathin oxynitride films for CMOS technology
EN
In this work, a review of possible methods of oxynitride film formation will be given. These are different combinations of methods applying high-temperature oxidation and nitridation, as well as ion implantation and deposition techniques. The layers obtained using these methods differ, among other aspects in: nitrogen content, its profile across the ultrathin layer,... etc., which have considerable impact on device properties, such as leakage current, channel mobility, device stability and its reliability. Unlike high-temperature processes, which (understood as a single process step) usually do not allow the control of the nitrogen content at the silicon-oxynitride layer interface, different types of deposition techniques allow certain freedom in this respect. However, deposition techniques have been believed for many years not to be suitable for such a responsible task as the formation of gate dielectrics in MOS devices. Nowadays, this belief seems unjustified. On the contrary, these methods often allow the formation of the layers not only with a uniquely high content of nitrogen but also a very unusual nitrogen profile, both at exceptionally low temperatures. This advantage is invaluable in the times of tight restrictions imposed on the thermal budget (especially for high performance devices). Certain specific features of these methods also allow unique solutions in certain technologies (leading to simplifications of the manufacturing process and/or higher performance and reliability), such as dual gate technology for system-on-chip (SOC) manufacturing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.