Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cracking risk
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Due to the large amount of binder and low water-cement ratio, high-performance cement composites have high compressive strength and a dense hardened cement paste microstructure. External curing is insufficient, as it cannot reach the interior parts of the structure, which allows autogenous shrinkage to occur in the inside. Lack of prevention of autogenous shrinkage and high restraint causes structural microcracks around rigid components (aggregate, rebars). Consequently, this phenomenon leads to the propagation of internal microcracks to the surface and reduced concrete durability. One way to minimize autogenous shrinkage is internal curing. The use of soaked lightweight aggregate to minimize the risk of cracking is not always sufficient. Sorption and desorption kinetics of fine and coarse fly ash aggregate were tested and evaluated. The correlation between the development of linear autogenous shrinkage and the tensile stresses in the restrained ring test is assessed in this paper. A series of linear specimens, with cross-section and length custom designed to match the geometry of the concrete ring, were tested and analyzed. Determination of the maximum tensile stresses caused by the restrained autogenous shrinkage in the restrained ring test, together with the approximation of the tensile strength development of the cement composites were used to evaluate the cracking risk development versus time. The high-performance concretes and mortars produced with mineral aggregates and lightweight aggregates soaked with water were tested. The use of soaked granulated fly ash coarse lightweight aggregate in cementitious composites minimized both the autogenous shrinkage and cracking risk.
PL
Z powodu dużej ilości spoiwa i niskiego wskaźnika woda-cement, wysokowartościowe kompozyty cementowe mają wysoką wytrzymałość na ściskanie i szczelną mikrostrukturę. Zewnętrzna pielęgnacja jest niewystarczająca, ponieważ nie może dotrzeć do wewnętrznej struktury materiału, co pozwala na wystąpienie skurczu autogenicznego. Brak zabezpieczenia materiału przed skurczem autogenicznym i wysoki poziom ograniczenia odkształceń powodują mikropęknięcia wokół sztywnych ośrodków materiałowych (kruszywo, pręty zbrojeniowe). W konsekwencji zjawisko prowadzi do propagacji mikropęknięć wewnętrznych do strefy powierzchniowej i utraty trwałości betonu. Jednym ze sposobów minimalizacji skurczu autogenicznego jest pielęgnacja wewnętrzna. Zastosowanie namoczonego kruszywa lekkiego w celu zminimalizowania ryzyka pękania jest nie zawsze wystarczające. Zbadano i oceniono kinetykę sorpcji i desorpcji drobnego i grubego kruszywa lekkiego z granulowanego popiołu lotnego. W artykule przedstawiono korelację między rozwojem liniowego skurczu autogenicznego a naprężeniami rozciągającymi w teście pierścienia ograniczającego wg ASTM C1581. Zbadano i przeanalizowano serię próbek liniowych o przekroju poprzecznym i długości dostosowanych do geometrii próbek pierścieniowych. Określenie maksymalnych naprężeń rozciągających wywołanych przez ograniczony skurcz autogeniczny w teście pierścieniowym wraz z przybliżonym rozwojem wytrzymałości na rozciąganie kompozytów cementowych użyto do oceny rozwoju ryzyka pękania w czasie. Badania objęły wysokowartościowe betony i zaprawy z kruszywem naturalnym i kruszywem lekkim nasączonym wodą. Zastosowanie w kompozytach cementowych grubego kruszywa lekkiego zminimalizowało zarówno rozwój skurczu autogenicznego i ryzyko pękania.
EN
To comprehensively investigate the diversity of a chamfer technology and a convex roll technology under the same soft reduction process (i.e., section size, reduction amount, casting speed and solid fraction), a three-dimensional mechanical model was developed to investigate the effect of the chamfer profile and roll surface profile on the deformation behavior, cracking risk, stress concentration and reduction force of as-cast bloom during the soft reduction process. It was found that a chamfer bloom and a convex roll can both avoid the thicker corner of the as-cast bloom solidified shell, and significantly reduce reduction force of the withdrawal and straightening units. The convex profile of roll limits lateral spread along bloom width direction, therefore it forms a greater deformation to the mushy zone of as-cast bloom along the casting direction, the tensile strain in the brittleness temperature range (BTR) can obviously increase to form internal cracks. The chamfer bloom is much more effective in compensating the solidification shrinkage of mushy zone. In addition, chamfer bloom has a significant decrease of tensile strain in the brittleness temperature range (BTR) areas, which is expected to greatly reduce the risk of internal cracks.
EN
Temperature changes due to hydration heat often cause cracks in the early-age concrete deck of steel–concrete composite girder bridges, even before opening to traffic. However, no available methods are provided in current specifications for the thermal effect calculation. To fill this gap, large-scale temperature measurements and fine finite-element model (FEM) analysis were performed on an actual composite girder bridge. Based on the fully validated FEM, a comprehensive parametric study was carried out to establish the spatio-temporal pattern of hydration-caused temperature, including a vertical pattern and an evolutionary pattern. Finally, a simplified method was presented for the thermal stress calculation of composite girders, and a case study was also provided. Measurements showed that temperature differences of concrete deck varied below 5 °C, much smaller than the entire composite section. FEM analysis then suggested that the influence of solar radiation can be basically ignored compared with hydration heat. The spatio-temporal pattern in the form of the coefficient of temperature rise was proposed based on the above findings and parametric study, and the reliability was properly verified with experimental or FEM results. For the final simplified method, the case study demonstrated that it can effectively facilitate the thermal stress calculation of composite girders during hydration process by adopting the proposed spatio-temporal pattern. As such, preliminary curing schemes can be easily selected to control the concrete cracking risk before casting.
PL
Omówiono charakter naprężeń termiczno-skurczowych powstających we wczesnej fazie realizacji masywnych płyt fundamentowych. Przedstawiono prosty model analityczny, który umożliwia wyznaczenie temperatury twardnienia betonu, zmian wilgotności, naprężeń termiczno-skurczowych i ryzyka ewentualnego zarysowania w takich płytach. Wyniki obliczeń analitycznych przykładowej płyty fundamentowej porównano z wynikami analiz numerycznych, uzyskując dobrą zgodność.
EN
The article describes the nature of thermal-shrinkage stress occurring in the early age of the massive foundation slabs. A simple analytical model, which allows determining the concrete hardening temperature, changes in humidity, thermal-shrinkage stresses and the risk of possible cracks in massive foundation slabs is presented. The results of analytical calculations performed in an exemplary foundation slab compared with the results obtained from the numerical analysis have shown good compatibility.
PL
W konstrukcjach betonowych znany jest efekt tzw. samoocieplenia betonu. Wskutek wydzielanego w procesie hydratacji cementu ciepła następuje wzrost temperatury betonu. Chłodzenie warstw powierzchniowych konstrukcji oraz stosunkowo niska wartość współczynnika przewodnictwa cieplnego powodują zróżnicowanie temperatur pomiędzy warstwami powierzchniowymi a wnętrzem konstrukcji. W tym samym czasie pojawiają się odkształcenia skurczowe będące skutkiem zachodzących reakcji chemicznych.
EN
Self-heating of concrete is a known effect in concrete structures. The temperature of the concrete rises due to the heat produced in the cement hydration process. Cooling of the surface layers of the structure, and the relatively low value of the heat conduction coefficient, lead to temperature differences between the surface layers and the interior. At the same time shrinkage deformations appear, resulting from the ongoing chemical reactions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.