PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental consequences of a galvanising plant fire

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study is to determine the concentration of selected heavy metals in soil contaminated with galvanising fume resulting from a fire in a galvanising plant. Surface horizon of soil exposed to contamination by toxic fumes due to the fire of a galvanising plant in Dębska Wola near Kielce (SE Poland) was analysed. Soil samples were collected in an agricultural area of 12 ha after the plant’s failure in 2019 and three years after the fire in 2022. Grain-size distribution, pH and concentration of zinc, lead and cadmium were determined. The acceptable values of pollutants were significantly exceeded in soil (Znmax - 2007.3 mg∙kg-1 DM, Pbmax - 509.5 mg∙kg-1 DM, Cdmax - 17.1 mg∙kg-1 DM in 0-5 cm horizon) and reduced in control samples (Znmax - 756.1 mg∙kg-1 DM, Pbmax - 320.1 mg∙kg-1 DM, Cdmax - 15 mg∙kg-1 DM). In the organic-mineral horizon the concentrations declined by an average of Zn - 41.8%, Pb - 26.1% and Cd16.3%, while in the mineral horizon by 27.8% (Zn), 26.7% (Pb) and 15.6% (Cd). Industrial plants, in which thermal treatment of molten metals is conducted, pose a real threat to the environment in the case of a failure. In order to minimise the effects of potential leaks, their location should be thoroughly considered. The course and consequences of accidents should be monitored during the event (such as fire) and in the long term (e.g. with the use of bioindicators).
Wydawca
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Jan Kochanowski University of Kielce, Institute of Geography and Environmental Sciences, ul. Uniwersytecka 7, 25-406 Kielce, Poland
  • Jan Kochanowski University of Kielce, Institute of Geography and Environmental Sciences, ul. Uniwersytecka 7, 25-406 Kielce, Poland
autor
  • University of Technology, Faculty of Environmental Engineering, Geodesy and Renewable Energy, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • Ajmone-Marsan, F. and Biasioli, M. (2010) “Trace elements in soils of urban areas,” Water, Air, & Soil Pollution, 213, pp. 121−143. Available at: https://doi.org/10.1007/s11270-010-0372-6.
  • Alengebawy, A. et al. (2021) “Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications,” Toxics, 9(3), 42. Available at: https://doi.org/10.3390/toxics9030042.
  • Alloway, B.J. (2009) “Soil factors associated with zinc deficiency in crops and humans,” Environmental Geochemistry and Health, 31, pp. 537−548. Available at: https://doi.org/10.1007/s10653-009-9255-4.
  • Alsafran, M. et al. (2021) “Ecological and health risks assessment of potentially toxic metals and metalloids contaminants: A case study of agricultural soils in Qatar,” Toxics, 9, 35. Available at: https://doi.org/10.3390/toxics9020035.
  • Al-Taani, A.A. et al. (2021) “Contamination assessment of heavy metals in agricultural soil, in the Liwa area (UAE),” Toxics, 9, 53. Available at: https://doi.org/10.3390/toxics9030053.
  • Amirmoradi, S. et al. (2012) “Effect of cadmium and lead on quantitative and essential oil traits of peppermint (Mentha piperita L.),” Notulae Scientia Biologicae, 4, pp. 101−109. Available at: https://doi.org/10.15835/nsb448185.
  • Baran, A. and Wieczorek, J. (2012) “Zawartość cynku w różnych elementach środowiska w strefie potencjalnego oddziaływania cynkowni [Content of zinc in the different elements of the environment in zone of potential impact galvanizing],” Proceedings of ECOpole, 6, pp. 193−198.
  • Barbieri, M. (2016) “The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination,” Journal of Geology & Geophysics, 5(1), 1000237. Available at: https://doi.org/10.4172/2381-8719.1000237.
  • Bednarek, R., Dziadowiec, H. and Pokojowska, U. (2002) “Pedological aspect of variability,” Ecological Questions, 1, pp. 35−41.
  • Biasioli, M. and Ajmone-Marsan, F. (2007) “Organic and inorganic diffuse contamination in urban soils: The case of Torino (Italy),” Journal of Environmental Monitoring, 9, pp. 862−868. Available at: https://doi.org/10.1039/B705285E.
  • Biasioli, M., Barberis, R. and Ajmone-Marsan, F. (2006) “The influence of a large city on some soil properties and metals content,” Science of the Total Environment, 356, pp. 154−164. Available at: https://doi.org/10.1016/j.scitotenv.2005.04.033.
  • Binner, H. et al. (2023) “Metals in urban soils of Europe: A systematic review,” Science of the Total Environmental, 854, 158734. Available at: https://doi.org/10.1016/j.scitotenv.2022.158734.
  • Bosiacki, M., Bednorz, L. and Spiżewski, T. (2022) “Concentration of heavy metals in urban allotment soils and their uptake by selected vegetable crop species – A case study from Gorzów Wielkopolski, Poland,” Journal of Elementology, 27, pp. 405−421. Available at: https://doi.org/10.5601/jelem.2022.27.1.2275.
  • Cabała, J. et al. (2020) “Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (Southern Poland),” Minerals, 10, 28. Available at: https://doi.org/10.3390/min10010028.
  • Chen, R. et al. (2022) “Assessment of soil-heavy metal pollution and the health risks in a mining area from Southern Shaanxi Province, China,” Toxics, 10, 385. Available at: https://doi.org/10.3390/toxics10070385.
  • Costa da Silva, T.A. et al. (2021) “Deposition of potentially toxic metals in the soil from surrounding cement plants in a karst area of Southeastern Brazil,” Conservation, 1, pp. 137−150. Available at: https://doi.org/10.3390/conservation1030012.
  • Diatta, J.B., Chudzińska, E. and Wirth, S. (2008) “Assessment of heavy metal contamination of soils impacted by a zinc smelter activity,” Journal of Elementology, 13, pp. 5–16.
  • Elemike, E.E. et al. (2019) “The role of nanotechnology in the fortification of plant nutrients and improvement of crop production,” Applied Sciences, 9, 499. Available at: https://doi.org/10.3390/app9030499.
  • FAO (2015) World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015. World Soil Resources Reports, 106. Rome: Food and Agriculture Organization of the United Nations. Available at: https://openknowledge.fao.org/server/api/core/bit-streams/bcdecec7-f45f-4dc5-beb1-97022d29fab4/content (Accessed: January 10, 2024).
  • Filonowicz, P. (1968) Objaśnienia do szczegółowej mapy geologicznej Polskie w skali 1:50 000, Arkusz Morawica (851) [Explanations to geological map of Poland, Morawica sheet]. Warszawa: Wydawnictwa Geologiczne.
  • Fodoué, Y. et al. (2022) “Heavy metal contamination and ecological risk assessment in soils of the Pawara gold mining area, ekstern Cameroon,” Earth, 3, pp. 907−924. Available at: https://doi.org/10.3390/earth3030053.
  • Fritsch, C. et al. (2010) “Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife,” Chemosphere, 81, pp. 141−155. Available at: https://doi.org/10.1016/j.chemosphere.2010.06.075.
  • Gavrilescu, M. (2021) “Water, soil, and plants interactions in a threatened environment,” Water, 13, 2746. Available at: https://doi.org/10.3390/w13192746.
  • Haase, H. and Rink, L. (2014) “Multiple impacts of zinc on immune function,” Metallomics, 6, pp. 1175−1180. Available at: https://doi.org/10.1039/C3MT00353A.
  • Hakanson, L. (1980) “An ecological risk index for aquatic pollution control. A sedimentological approach,” Water Research, 14, 8, pp. 975−1001. Available at: https://doi.org/10.1016/0043-1354(80)90143-8.
  • Hooda, P. (2010) Trace elements in soils. Chichester, UK: Wiley-Blackwell. Available at: https://doi.org/10.1002/9781444319477.
  • Huang, H. et al. (2021) “Source apportionment and ecological risk assessment of potentially toxic elements in cultivated soils of Xiangzhou, China: A combined approach of geographic information system and Random Forest,” Sustainability, 13, 1214. Available at: https://doi.org/10.3390/su13031214.
  • Jabłońska-Trypuć, A. (2007) “Aktywność biologiczna wybranych mikroelementów w skórze i ich rola w cukrzycy [Biological activity selected microelements in skin and their role in diabetes],” Przegląd Kardiodiabetologiczny, 2, pp. 122−126.
  • Jin, Z. et al. (2015) “Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb–Zn mine tailing dam collapse area of Sidi village, SW China,” Environmental Earth Sciences, 73, pp. 267−274. Available at: https://doi.org/10.1007/s12665-014-3421-4.
  • Juszczyk, A. et al. (2006) Objaśnienia do mapy geośrodowiskowej Polski 1:50.000 [Explanations to geo-environmental Map of Poland 1:50.000]. Warszawa: Wydawnictwa Geologiczne.
  • Kabata-Pendias, A. (2010) Trace elements in soils and plants. 4 th ed. Boca Raton, FL, USA: CRC Press. Available at: https://doi.org/10.1201/b10158.
  • Kabata-Pendias, A. et al. (1993) Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. Ramowe wytyczne dla rolnictwa [Evaluation of the degree of contamination of soils and plants by heavy metals and sulfur. A framework of guidance for agriculture]. Puławy: IUNG.
  • Kabata-Pendias, A. and Mukherjee, A.B. (2007) Trace elements from soil to human. Berlin/Heidelberg: Springer.
  • Kabata-Pendias, A. and Piotrowska, M. (1995) Podstawy oceny chemicznego zanieczyszczenia gleb. Metale ciężkie, siarka i WWA [Basics of assessment of chemical contamination of soils. Heavy metals, sulfur and PAHs]. Biblioteka Monitoringu Środowiska. Warszawa: PIOŚ, IUNG.
  • Kalicki, T. et al. (2020) “Historical and present-day human impact on fluvial systems in the Old-Polish Industrial District (Poland),” Geomorphology, 357, 107062. Available at: https://doi.org/10.1016/j.geomorph.2020.107062.
  • Kozłowski, R., Szwed, M. and Żelezik, M. (2021) “Environmental aspect of the cement manufacturing in the Świętokrzyskie Mountains (Southeastern Poland),” Minerals, 11, 277. Available at: https://doi.org/10.3390/min11030277.
  • Kumar, S. et al. (2019) “Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches – A review,” Environmental Research, 179, 108792. Available at: https://doi.org/10.1016/j.envres.2019.108792.
  • Lakshmi, P.V. et al. (2021) “Long-term zinc fertilization in calcareous soils improves wheat (Triticum aestivum L.) productivity and soil zinc status in the rice−wheat cropping system,” Agronomy, 11, 1306. Available at: https://doi.org/10.3390/agronomy11071306.
  • Latosińska, J., Kowalik, R. and Gawdzik, J. (2021) “Risk assessment of soil contamination with heavy metals from municipal sewage sludge,” Applied Sciences, 11(2), 548. Available at: https://doi.org/10.3390/app11020548.
  • Lee, S.R. (2018) “Critical role of zinc as either an antioxidant or a prooxidant in cellular systems,” Oxidative medicine and cellular longevity, 2018, 9156285. Available at: https://doi.org/10.1155/2018/9156285.
  • Marchewka, Z. (2009) “Mechanizm nefrotoksycznego działania wybranych metali ciężkich [The mechanism of nephrotoxic activity of selected heavy metals],” Bromatologia i Chemia Toksykologiczna, 4, pp. 1135−1143.
  • Moscatelli, M.C. et al. (2017) “Soil properties as indicators of treeline dynamics in relation to anthropogenic pressure and climate change,” Climate Research, 73, pp. 73−84. Available at: https://doi.org/10.3354/cr01478.
  • Müller, G. (1969) “Index of geoaccumulation in sediments of the Rhine River,” GeoJournal, 2, pp. 108−118.
  • Pasieczna, A. (ed.) (2012) Atlas geochemiczny Polski 1:250000 [Geochemical atlas of Poland]. Warszawa: PIG-PIB. Available at: https://mapgeochem.pgi.gov.pl/atlas-polski/atlas-geochemiczny-polski/ (Accessed: January 10, 2024).
  • Pasieczna, A. and Markowski, W. (2015) GEMAS. Badania geochemiczne gleb pól uprawnych i trwałych użytków zielonych w Polsce – Raport krajowy [GEMAS. Geochemical mapping of agricultural soils and grazing land in Poland – National report]. Warszawa: PIG-PIB. Available at: https://mapgeochem.pgi.gov.pl/atlas-polski/gemas-raport-krajowy-2/gemas-raport-krajowy/ (Accessed: January 10, 2024).
  • Plum, L.M., Rink, L. and Haase, H. (2010) “The essential toxin: Impact of zinc on human health,” International Journal of Environmental Research and Public Health, 7, pp. 1342−1365. Available at: https://doi.org/10.3390/ijerph7041342.
  • PN-EN 15933:2013-02E. Osady ściekowe, uzdatnione bioodpady oraz gleba – Oznaczanie pH [Soil, treated bio-waste and sewage sludge – Determination of pH]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-R-04032:1998. Gleby i utwory mineralne – Pobieranie próbek i oznaczanie składu granulometrycznego [Soils and minerals – Sampling and determination of grain size composition]. Warszawa: Polski Komitet Normalizacyjny.
  • Prasad, M.N.V. and Freitas, H. (2003) “Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology,” Electronic Journal of Biotechnology, 6(3), pp. 275−321. Available at: http://www.ejbiotechnology.info/index.php/ejbio-technology/article/view/v6n3-6 (Accessed: January 10, 2024).
  • PTG and UWP (2019) Systematyka gleb Polski [Polish soil classification]. Wrocław–Warszawa: Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb, Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze. Available at: http://www.ejpau.media.pl/PDFy/systematyka-gleb-polski-wyd%206.pdf (Accessed: January 10, 2024).
  • Rahman, M.S., Saha, N. and Molla, A.H. (2014) “Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh,” Environmental Earth Sciences, 71, pp. 2293−2308. Available at: https://doi.org/10.1007/s12665-013-2631-5.
  • Rashid, A. et al. (2023) “Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health,” Agronomy, 13, 1521. Available at: https://doi.org/10.3390/agronomy13061521.
  • Roohani, N. et al. (2013) “Zinc and its importance for human health: An integrative review,” Journal of Research in Medical Sciences, 18, 2, pp. 144−157.
  • Rozporządzenie (2016) “Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi [Regulation of the Minister of the Environment of 1 September 2016 on the method of assessing soil contamination],” Dz.U. 2016 poz. 1395.
  • Salminen, R. et al. (2005) FOREGS Geochemical atlas of Europe, Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland.
  • Santos, H.F., Soares, M.B. and Alleoni, L.D.F. (2022) “Pristine and biochar-supported nano zero-valent iron to immobilize As, Zn and Pb in soil contaminated by smelting activities,” Journal of Environmental Management, 321, 116017. Available at: https://doi.org/10.1016/j.jenvman.2022.116017.
  • Świdawska-Urbańska, J. and Zalewski, M. (2019) “Assessment of selected heavy metals content in soil of agricultural activity,” Geomatics and Environmental Engineering, 13, pp. 103−113. Available at: https://doi.org/10.7494/geom.2019.13.3.103.
  • Świercz, A. et al. (2023) “Assessment of cultivated soil contamination by potentially toxic metals as a result of a galvanizing plant failure,” Sustainability, 15, 9288. Available at: https://doi.org/10.3390/su15129288.
  • Świercz, A., Gandzel, A. and Tomczyk-Wydrych, I. (2021) “Dynamics of changes in selected soil traits in the profiles of arable soils anthropogenically alkalised by the cement and lime industry within the Kielecko-Łagowski Vale (Poland),” Land, 10, 84. Available at: https://doi.org/10.3390/land10010084.
  • Terrin, G. et al. (2020). “Nutritional Intake influences zinc levels in preterm newborns: An observational study,” Nutrients, 12, 529. Available at: https://doi.org/10.3390/nu12020529.
  • Zhiyuan, W. et al. (2011) “Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index,” Procedia Environmental Sciences, 10, 1946−1952. Available at: https://doi.org/10.1016/j.proenv.2011.09.305.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6641d4f0-54e3-470e-a8c2-c0937cb1ad4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.