PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring of high-speed shaft of gas turbine using artificial neural networks: predictive model application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The automatic engineering known a very rapid progress with the consequent development of numerical methods and computer systems, by the growth of computational capacity. In this context, this work proposes a strategy of predictive control of the high-pressure shaft speed of a gas turbine using artificial neural networks in order to monitor the vibratory behavior of this rotating machine. This approach makes it possible to ensure the stability of this turbine under real conditions and to detect any deviation of their dynamic behavior from the margin of safety. This approach makes it possible to include the control limitations on the turbine variables in the modeling step of the high-speed shaft speed controller.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
autor
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
autor
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
autor
  • Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
Bibliografia
  • 1. Benyounes A, Hafaifa A, Guemana M. Gas turbine modelling based on fuzzy clustering algorithm using experimental data. Journal of Applied Artificial Intelligence, Taylor & Francis 2016; 30(1): 29-51.
  • 2. Hafaifa A, Djeddi AZ, Daoudi A. Fault detection and isolation in industrial control valve based on artificial neural networks diagnosis. Journal of Control Engineering and Applied Informatics 2013; 15(3): 61-69.
  • 3. Hafaifa A, Guemana M, Daoudi A. Vibration supervision in gas turbine based on parity space approach to increasing efficiency. Journal of Vibration and Control 2015; 21: 1622-1632.
  • 4. Djaidir B, Hafaifa A, Abdallah K. Faults detection in gas turbine rotor using vibration analysis under varying conditions. Journal of Theoretical and Applied Mechanics 2017; 55(2): 393-406.
  • 5. Djaidir B, Hafaifa A, Abdallaha K. Monitoring gas turbines using speedtronic Mark VI control systems. Pipeline & Gas Journal 2015; 242(10): 48-86.
  • 6. Djaidir B, Hafaifa A, Abdallaha K. Vibration Detection in Gas Turbine Rotor Using Artificial Neural Network Combined with Continuous Wavelet. Book Chapter in Advances in Acoustics and Vibration, Volume 5 of the series Applied Condition Monitoring pp 101-113. On line. 02 September 2016.
  • 7. Chen YM, Lee ML. Neural networks-based scheme for system failure detection and diagnosis. Mathematics and Computers in Simulation 2002; 58(2): 101-109.
  • 8. Chii-Shang Tsai, Chuei-Tin Chang. Dynamic process diagnosis via integrated neural networks. Computers & Chemical Engineering 1995; 19(1): 747-752.
  • 9. Combescure D, Lazarus A. Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit. Journal of Sound and Vibration 2008; 318(4-5): 1262-1280.
  • 10. Ewins DJ. Control of vibration and resonance in aero engines and rotating machinery - An overview. International Journal of Pressure Vessels and Piping, 2010; 87(9): 504-510.
  • 11. Fatima Bekaddour, Mohamed Ben Rahmoune, Chikhi Salim, Ahmed Hafaifa. Performance study of different metaheuristics for diabetes diagnosis. Book Chapter, Advances in Computational Intelligence, 2017, DOI: 10.1007/978-3-319-59153-7_51
  • 12. Gwo-Chung Tsai. Rotating vibration behavior of the turbine blades with different groups of blades. Journal of Sound and Vibration 2004; 271(3-5, 6): 547-575.
  • 13. Isermann R. Process fault detection based on modeling and estimation methods: a survey. Automatica Journal, 1984; 20: 387-404.
  • 14. Leger RP, Garland Wm.J, Poehlman WFS. Fault detection and diagnosis using statistical control charts and artificial neural networks. Artificial Intelligence in Engineering, 1998; 12(1-2): 35-47.
  • 15. Mohamed Ben Rahmoune, Ahmed Hafaifa, Mouloud Guemana. Fault diagnosis in gas turbine based on neural networks: Vibrations speed application. Book Chapter in Advances in Acoustics and Vibration, Volume 5 of the series Applied Condition Monitoring pp 1-11, on line. 02 September 2016, ISBN: 978-3-319-41458-4, 2017.
  • 16. Nadji Hadroug, Ahmed Hafaifa, Abdellah Kouzou, Ahmed Chaibet. Faults detection in gas turbine using hybrid adaptive network based fuzzy inference systems to controlling there dynamic behavior. Diagnostyka, 2016; 17(4): 3-17.
  • 17. Hadroug N, Hafaifa A, Abdellah K, Chaibet A Dynamic model linearization of two shafts gas turbine via their input / output data around the equilibrium points. Energy Elsevier 2017; 120: 488-497.
  • 18. Nikpey H, Assadi M, Breuhaus P, Mørkved PT. Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas. Applied Energy 2014; 117: 30-41.
  • 19. Orhan Er, Nejat Yumusak, Feyzullah Temurtas. Chest diseases diagnosis using artificial neural networks. Expert Systems with Applications 2010; 37(12): 7648-7655.
  • 20. Yang SH, Chen BH, Wang XZ, Neural network based fault diagnosis using unmeasurable inputs. Engineering Applications of Artificial Intelligence 2000; 13(3): 345-356.
  • 21. Zhang J, Morris AJ, Montague GA. Fault diagnosis of a cstr using fuzzy neural networks. Annual Review in Automatic Programming 1994; 19: 153-158.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd162f15-864c-4520-9db9-c4133d522fad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.