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Abstract  

The automatic engineering known a very rapid progress with the consequent development of numerical 
methods and computer systems, by the growth of computational capacity. In this context, this work proposes 
a strategy of predictive control of the high-pressure shaft speed of a gas turbine using artificial neural 
networks in order to monitor the vibratory behavior of this rotating machine. This approach makes it possible 
to ensure the stability of this turbine under real conditions and to detect any deviation of their dynamic 
behavior from the margin of safety. This approach makes it possible to include the control limitations on the 
turbine variables in the modeling step of the high-speed shaft speed controller. 
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1. INTRODUCTION  

The increasing complexity of industrial systems 
requires the implementation of modern techniques, 
that enable the development of effective monitoring 
strategies with reasonable costs, which is 
practically impossible with conventional 
monitoring mechanisms.  

Recently, the technological evolution in the 
fields of industrial computing and digital 
instrumentation, for the analysis of the monitoring 
systems of rotating machines, made it possible to 
implement new monitoring and maintenance 
strategies for these installations industrial [1, 2-6, 
11 and 17]. The protection of these machines is 
ensured by the triggering of an alarm or by stopping 
the machine, if the amplitude of the vibration 
reaches values deemed excessive for the correct 
operation or integrity of the machine. In order to 
control the vibration dynamic behavior of the high-
pressure shaft of a gas turbine, this work proposes 
to examine and illustrate the aptitude of the 
application of artificial neural networks in order to 
follow the operating condition of this rotating 
machine; This is part of the vibratory monitoring, 
taking the example of a GE MS 3002 gas turbine 
system.  

To achieve these objectives, systems are used 
which are becoming more efficient as regards the 
choice of technology to adopt a desired behavior 
and to ensure a stable and safe operation of this 
industrial process. 

Indeed, the proposed monitoring mechanism 
based on artificial neural networks makes it 
possible to demonstrate the symptoms of an 
anomaly, to find the origin of the anomaly and 
determine the corrective actions to be taken and 
especially for the vibratory failures. This proposed 
approach offer  a best solution for increasing 
performance and improving the reliability of the 
rotating machine under consideration. Also, it 
ensures the durability of the equipment by avoiding 
sudden failures, which makes it possible to 
maintain the operation of the turbine and to keep 
the threshold of productivity at a stable level, in 
order to avoid any degradation of the studied 
system by the scheduling of preventive tasks. 

This work proposes a strategy of a robust 
predictive controller of the high-pressure shaft 
speed of a gas turbine, using artificial neural 
networks. The controller design is made from the 
input-output model of the examined gas turbine. 
From this, an equivalent representation of variables 
state is derived, which depends only on past outputs 
and inputs (known values) and to use the proposed 
controller algorithm in the feedback system state. 

2. GAS TURBINE MONITORING USING 
ARTIFICIAL NEURAL NETWORK 
ALGORITHM 

The strategy of predictive model applied to the 
high-pressure shaft speed of the examined turbine 
based on artificial neural network techniques, 
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allows the development of a fault diagnosis 
procedure, designed to detect and locate vibration 
defects of this machine and allows to make a 
localization and identification of the vibration 
failure by the model of system to be monitored. In 
this section of our work, the artificial neural 
network approach is proposed to describe the 
dynamic behavior of the turbine shaft, which can be 
characterized by deterministic relationships 
between causes and vibration effects. 

2.1. ARTIFICIAL NEURAL NETWORK 
ALGORITHM 

In order to improve the performance of the 
proposed control strategy, that is to say the 
evolution of its outputs as a function of that of its 
inputs. Artificial neural networks are suitable for 
this type of problem as an effective supervisory 
tool, among the various types of artificial neural 
networks, multi-layer networks, which are very 
popular and currently used in several industrial 
applications [7-8, 14-15 and 18]. In this work, the 
artificial neural networks approach was used to 
model the parameters of the rotation speed as input 
variables and their measurements are accessible by 
sensors which provide their quantities in real time. 
The structure of the proposed multilayer neural 
networks is shown in Figure 1. 

In the case under consideration, the algorithm 
code, taking into account the parameters of the 
examined turbine and their operating environment, 
is responsible for performing supervised learning 
from a data base that has been carried out and well 
adapted in the framework learning by the multi-
layer perceptron for the control of the studied 
turbine. This is to optimize the best parameters for 
the used artificial neural networks. 

Vibration   y

1x

2x

Nx

3x

jiw , klw ,

Fig. 1. Structure of multi-layer artificial neural networks 
[20] 

The step of modelling using neural networks use 
the retro-propagation of the gradient is performed 
by a supervised learning algorithm. This algorithm 
aims at making associations between pairs of 
vectors (input data, desired output). Indeed, the 
basic idea of this algorithm is to minimize the 
quadratic error criterion with respect to the 
connection weights, once the weights are updated 
according to the error, layer by layer from the 
output layer, is given by the following formula: 
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The predictive controller inputs with the neural 
network structure is given by: 
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where ),....,2,1( nixi =  are the input signals from 
n  external neurons transmitted to the neuron k , 

kiw  is the weight between i  and k  neuron. 
The multi-layer neural network proposed for 

this application uses a sigmoid function, linear in 
the hidden layer and the output layer defined by the 
following equation: 
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with 21, ff  the hidden layer activation and 
output layer function. 

The retro-propagation algorithm uses the 
learning rule to minimize the quadratic error with 
respect to the connection weights given by the 
following equation [19, 21]: 
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The change of the weight ijw  with an amount 

of ijwΔ  must be proportional to the gradient error 
given by: 

( )∑ −=−=Δ
i iii

ij
ij xyd

dw
dEw ηη        (5) 

The objective of the retro-propagation algorithm 
is to minimize the mean square error by calculating 
network output error using the gradient and then 
modifying the weights in the opposite direction of 
gradient. For the stopping criterion of this algorithm 
is to use a validation set from the real data  of the 
examined system. From the equations 4 and 5, the 
retro-propagation algorithm written in the following 
form: 

∑ ∑
∈ =

−=
appEk

m

j
jkkjapp dwxywE

2

1

),(
2
1)(  (6) 

where jkd  and èmej  are the desired output 
elements,  kd  is the output of the network of the 

element input kx  of  èmek  training set. 
The objective of this error given by the gradient 

retro-propagation learning algorithm is to find the 
set of weights, ensuring an output of the neural 
network which follows as much as possible the 
desired reference value. Subsequently, learning will 
be supervised from neural networks from a data 
base, to suit the predictive control strategy of the 
examined gas turbine. 



DIAGNOSTYKA, Vol. 18, No. 4 (2017)  
RAHMOUNE MB, HAFAIFA A, ABDELLAH K, CHEN XQ: Monitoring of high-speed shaft of gas turbine … 

5

2.2. GAS TURBINE PREDICTIVE MODEL 

The objective of the predictive control model 
(MPC) is to use this model to predict the behavior 
of the system and choose the best decision in the 
sense of a certain cost while respecting the 
constraints of operation. In this section, the MPC 
will be applied to a MS 3002 gas turbine, this 
turbine is characterized by four subsystems, the 
axial compressor, the combustion chamber, the high 
pressure turbine and the low pressure turbine, as 
shown in Figure 2, where the parameters of this 
system are the fuel flow fW  inject into the 
combustion chamber and controlled by the stop 

ratio valve SRV and the gas control valve CGV , 
as well as the pressure 2P and temperature 2T  at 
the inlet of the turbine. 

The fuel flow rate is considered as input from 
the predictive control model and the high-pressure 
shaft rotation speed HP  as output, with the 
variation in fuel flow fW  depends on the 

temperature 2T  and pressure 2P  at the outlet of 
the compressor. This allows the gas control valve 
CGV and the gas shut-off valve SRV to be 
operated. 

 CGV 
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Fig. 2. Predictive control model of a gas turbine 

The pressure and the temperature at the outlet of 
the compressor ( 2P and 2T ) are defined by the 
following equation: 

γ
γ

τ
)1(

1

2
12

12

)(

.
−

=

=

P
PTT

PP

                (7) 

where τ is the gas compression ratio, 
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)21(γ  is the isentropic exponent of gas 

with )21( TTpC −  defines the average specific heat of 
the air between temperatures 1T  and 2T . 

The variation of the rotor HP characterized by 
temperature 3T  and pressure 3P , fuel flow rate  

fW  and variation of the gas control valve CGV , 
represented by the following equation: 

],,,[ 33 CGVWTPHP fspeed =                      (8) 

With the pressure 3P  is determined by the 
following formula: 
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where ccPΔ  is the pressure drop in the 
combustion chamber. 

The temperature 3T  is determined by the 
following formula: 

)3,0(

)02'(
03 ).(

...

TTpcac

cicccTTpac

CQQ
PQCQ

TT
+

+
+= − η

             (10) 

where acQ  is the flow of combustible air, cQ  is 
the fuel flow, ccη  is the efficiency of the 
combustion chamber, )0,2'( TTpC  is the average 
specific heat of the air between the temperatures  

2'T  and 0T  , ciP  is the lower calorific value of fuel. 
For the vibration dynamics monitoring of the 

turbine, a model based on neural network 
techniques with predictive control of shaft speed is 
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used, as shown in Figure 3, to predict the optimum 
performance of this machine, using the 
performance criteria given by: 
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where 21 , NN  and uN  represents the horizons 
on which the tracking error reference model, 'u  is 
the control signal of the shaft speed, y  and my  are 
the desired response and response of the network 
model. 
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Fig. 3. Predictive model for high-speed shaft  

speed control based on neural networks 

In the next section, the results of application of 
the predictive model method to controlling the 
parameters of a gas turbine will be presented, this 
method makes it possible to carry out the design of 
a dynamic controller with constraints on the control 
and the output, for the examined gas turbine. 

3. APPLICATION RESULTS 

In this section, the obtained experimental results 
will be presented, the experimental tests of the 
proposed approach were carried out under real 
conditions on the examined gas turbine. To collect 
and analyze the data of this machine, computer and 
software means were used to process the signals 
emitted by the different types of vibrations 
generated by the various components of the 
examined gas turbine. Where, the real-time 
spectrum analyzer using data collectors, on the 
examined gas turbine system, has a quick access to 
information and exchange standardized data from 
this gas turbine. The signals were recorded directly 
on a computer in the control room with a control 
and acquisition card, or we used this data 
acquisition system. The temporal signals and the 
test conditions are archived and attached to each 

point of measurements carried out, with the choice 
of parameters appropriate to the predictive model 
approach to controlling the parameters of a 
examined turbine. 

Indeed, the model developed in this work, 
shown in Figure 4, treats the dynamic behavior of a 
rotor of the gas turbine, rotating at high speed and 
supported by unbalance and misalignment 
(vibration) defects, taking into account the effects 
of constraints on the examined system. 
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Fig. 4. Model predictive control based on neural  
network 

 
And showing that the system studied has zones 

of instabilities vary with the frequency of rotation 
and the responses of the rotors to unbalances. This 
can create new critical frequencies on the gas 
turbine being examined. 

The model identification for the variables 
control of turbine is complete, where the 
performance optimization of this model has been 
tested by the used neural network learning 
algorithm. Thus the minimum and maximum values 
for the fuel flow rate input are in the order of 
23.0799 - 26.6069 and the minimum and maximum 
values of the gas generator shaft speed output are 
obtained in the order of 93% 100%, after learning 
of used neural networks, using data from the 12612 
data network, shown in Figure 5. 

The tests carried out are distributed over three 
parts, according to three phases of operation of the 
turbine, as shown in Figure 6; The first phase on 
75% for learning, then on 15% of the second phase 
and finally on 10% of the third phase for the 
validation of the neuronal model. 
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Fig. 5. High-pressure shaft rotation speed with neural networks model 
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Fig. 6. Phases of neural network model learning 

 
 
The mean square error MSE is calculated, as 

shown in Figure 7, to measure the amplitude of the 
error and validate the proposed modeling approach 
using the following formula: 
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where ix  is the desired output value, iu  is the 

predicted output of the neural network and n  is the 
number of the output data. 
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Fig. 7. Mean Square Error RMS 

 
 

 

Another test for the robustness of the proposed 
approach is obtained by determining the statistical 
coefficient, shown in Figure 8, to see the variation 
of the variance in the desired outputs, this statistical 
coefficient is given by: 
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The MSE  value is negatively oriented these 
values show better network performance, unlike 
statistics MSE , 2R  is positively oriented, the 2R  
value should converge close to 1 for the best fit of 
model. 

After the neural networks learning, the actual 
speed of the high pressure shaft compared by the 
neural network model is shown in Figures 9 and 10. 
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Fig. 9. High-pressure shaft rotation speed compared 

with there neural networks model 
 
The actual variation of the high-pressure shaft 

speed with the neural network model is presented 
below in Figure 12. 
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Fig. 10. High-pressure shaft rotation speed with neural 

networks model 
 
The obtained results of the predictive control by 

model based on the neural network allows to 
visualize the measured vibratory signals which 
leads to a greater imbalance on the rotor vibration 
of the gas turbine under examination. The obtained 
results by modeling using supervised learning 
techniques of neural networks show that the 
architecture of the network is better because the 
values of the quadratic error are the smallest and 
have been obtained at small calculation time only, 
which explains why the desired outputs are very 
close to the actual outputs. 

 
4. CONCLUSION 
 

The developed model in this work simulates the 
dynamic behavior of the gas turbine rotor, rotating 
at high speed, intended to drive a centrifugal 
compressor used in natural gas transportation. A 
monitoring technique based on neural networks was 
proposed, to give a response solicited from the 
input variable (vibration defects) to characterize the 
output variables, representing the operating status 

of this system. This technique presents a very fine 
analysis of the vibration defects and makes it 
possible to diagnose faults of different natures in 
several configurations, in real-time operating mode. 
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