PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The elements are present in the environment. Moreover, they are used in pharmacy and the production of new materials used in medical applications. They are often as environmental pollutants. They can accumulate in organisms and induce toxic effects on the cellular level. HepG2, L929 and Caco-2 cell lines were exposed to known concentrations of chromium chloride, iron chloride, nickel chloride, molybdenum trioxide and cobalt chloride (200 or 1000 μ M used alone and in combinations). Concentrations of chromium, iron, nickel, molybdenum and cobalt in the cell lysate and the culture medium were determined by ICP-MS. Moreover, sodium, potassium, calcium and magnesium concentrations were also measured. What is more, cells were observed under light and scanning electron microscope. The dose-dependent increase in the concentration of chromium, iron, nickel, molybdenum and cobalt in all cell lines after incubation with elements was observed. Potassium concentration decreases while sodium calcium and magnesium increase after incubation of cells with of mentioned elements. The incubation of cells with microelements induces cell morphology changes. The presented study shows the crucial role of tested microelements in the induction of cell death as a result of an imbalance of sodium, potassium, calcium and magnesium concentration inside the cell.
Rocznik
Strony
471--488
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Jan Kochanowski University of Kielce, Collegium Medicum, Department of Surgical Medicine with the Laboratory of Medical Genetics, al. IX Wieków Kielc 19A, 25-317 Kielce, Poland, phone +48 41 349 69 78, fax +48 41 349 69 16
  • Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland
  • Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland
  • Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland
  • Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland
  • Professor Jan Czochralski Kuyavian-Pomeranian Scientific Technological Centre, ul. I. Krasińskiego 4, 87-100 Toruń, Poland
Bibliografia
  • [1] Isvoran A, Roman D, Dascalu D, Vlad-Oros B, Ciorsac A, Pitulice L, et al. Human health effects of heavy metal pollution in the cross-border area of Romania and Serbia: A review. Ecol Chem Eng. 2021;28(3):365-88. DOI: 10.2478/eces-2021-0025.
  • [2] Ude CC, Esdaille CJ, Ogueri KS, Kan H-O, Laurencin SJ, Nair LS et al. The mechanism of metallosis after total hip arthroplasty. Regen Eng Transl Med. 2021;7:247-61. DOI: 10.1007/s40883-021-00222-1.
  • [3] Terpiłowska S, Siwicki AK. Modern biomaterials, their application and effects on the body. In: Skopińska-Różewska E, Siwicki AK, Zdanowski R, editors. Medical Biology - Selected Issues. Olsztyn: Edycja; 2014.
  • [4] Lamson DW, Plaza SM. The safety and efficacy of high-dose chromium. Alternative Med Rev. 2002;7(3):218-35. Available from: https://www.researchgate.net/publication/11253854_The_safety_and_efficacy_of_high-dose_chromium.
  • [5] DesMarias TL, Costa M. Mechanisms of chromium-induced toxicity. Current Opinion Toxicol. 2019;14:1-7. DOI: 10.1016/j.cotox.2019.05.003.
  • [6] Costa M, Murphy A. Overview of chromium(III) toxicology. Chapter 11. In: Vincent JB, editor. The Nutritional Biochemistry of Chromium(III). Amsterdam: Elsevier BV; 2019. DOI: 10.1016/B978-0-444-64121-2.00011-8.
  • [7] Zha L-Y, Xu Z-R, Wang M-Q, Gu L-Y. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. J Anim Physiol Anim Nutr. 2008;92:131-40. DOI: 10.1111/j.1439-0396.2007.00718.x.
  • [8] Bystrom LM, Guzman ML, Rivella S. Iron and reactive oxygen species: Friends or foes of cancer cells? Antioxid Redox Signaling. 2014;20(12):1917-24. DOI: 10.1089/ars.2012.501.
  • [9] Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: New players in metabolism cell death and diseases. Trends Biochem Sci. 2016;41(3):274-86. DOI: 10.1016/j.tibs.2015.11.012.
  • [10] Staniek H, Wójciak RW, Prokop K, Tubacka M, Krejpcio Z. Combined effect of diversified Fe(III) content in the diet and Cr(III) supplementation on the magnesium status in rats. J Elem. 2018;23(2):569-80. DOI: 10.5601/jelem.2017.22.2.1466.
  • [11] Mendel RR, Bittner F. Cell biology of molybdenum. Biochim Biophys Acta. 2006;1763:621-35. DOI: 10.1016/j.bbamcr.2006.03.013.
  • [12] Peng T, Xu Y, Zhang Y. Comparative genomics of molybdenum utilization in prokaryotes and eukaryotes. BMC Genomics. 2018;19:691. DOI: 10.1186/s12864-018-5068-0.
  • [13] Burzlaff A, Beevers C, Pearce H, Lloyd M, Klipsch K. New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances. Regul Toxicol Pharmacol. 2017;86:279-91. DOI: 10.1016/j.yrtph.2017.03.018.
  • [14] Hussein MA, Guan TS, Haque RA, Khadeer Ahamed MB, Abdul Majid AMS. Synthesis and characterization of thiosemicarbazone to molybdenum(VI)complexes: In vitro DNA binding, cleavage, and antitumor activities. Polyhedron. 2015;85:93-103. DOI: 10.1016/j.poly.2014.02.048.
  • [15] Mims MP, Prchal JT. Divalent metal transporter 1. Hematology. 2005;10(4):339-45. DOI: 10.1080/10245330500093419.
  • [16] Di Bucchianico S, Gliga AR, Åkerlund E. Skoglund S, Wallinder IO, Fadeel B, et al. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part Fibre Toxicol. 2018;15:32 DOI: 10.1186/s12989-018-0268-y.
  • [17] Camara-Martos F, Moreno-Rojas R. Cobalt: Toxicology. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of Food and Health. Cambridge, MA: Academic Press; 2016. DOI: 10.1016/B978-0-12-384947-2.00176-8.
  • [18] Forbes JR, Gros P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood. 2003;102(5):1884-92. DOI: 10.1182/blood-2003-02-0425.
  • [19] Tkaczyk C, Huk OL, Mwale F, Antoniou J, Zukor DJ, Petit A et al. Investigation of the binding of Cr(III) complexes to bovine and human serum proteins: A proteomic approach. J Biomed Mater Res. 2010;94A:214-22. DOI: 10.1002/jbm.a.32700.
  • [20] Terpilowska S, Siwicki AK. Pro- and antioxidant activity of chromium(III), iron(III), molybdenum(III) or nickel(II) and their mixtures. Chem Biol Interact. 2019;298:43-51. DOI: 10.1016/j.cbi.2018.10.028.
  • [21] Terpilowska S, Siwicki AK. Interactions between chromium(III) and iron(III), molybdenum(III) or nickel(II): cytotoxicity, genotoxicity and mutagenicity studies. Chemosphere. 2018;201:780-9. DOI: 10.1016/j.chemosphere.2018.03.062.
  • [22] Terpilowska S, Siwicki AK. Cell cycle and transmembrane mitochondrial potential analysis after chromium(III), iron(III), molybdenum(III) or nickel(II) and their mixture treatment. Tox Res. 2019;8(2):188-95. DOI: 10.1039/c8tx00233a.
  • [23] O'Brien TJ, Ceryak S, Patierno SR. Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res. 2003;533:3-36. DOI: 10.1016/j.mrfmmm.2003.09.006.
  • [24] Xu N. On the concept of resting potential-pumping ratio of the Na⁺/K⁺ pump and concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell. J Membr Biol. 2013;246(1):75-90. DOI: 10.1007/s00232-012-9507-6.
  • [25] Yurinskaya VE, Vereninov IA, Vereninov AA. The balance of Na+, K+, and Cl– unidirectional fluxes in normal and apoptotic U937 cells computed with all main types of cotransporters. Front Cell Dev Biol. 2020;8:591872. DOI: 10.3389/fcell.2020.591872.
  • [26] Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, et al. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 2020;21(21):8323. DOI: 10.3390/ijms21218323.
  • [27] Duvvuri B, Lood C. Mitochondrial calcification. Immunometabolism. 2021;3(1):e210008. DOI: 10.20900/immunometab20210008.
  • [28] Janssen LJ, Mukherjee S, Ask K. Calcium homeostasis and ionic mechanisms in pulmonary fibroblasts. Am J Respir Cell Mol Biol. 2015;53(2):135-48. DOI: 10.1165/rcmb.2014-0269TR.
  • [29] Santos JM, Hussain F. Magnesium chloride increases apoptosis and decreases prostate cancer cells migration. Funct Foods Health Dis. 2018;8(1):62-78. DOI: 10.31989/ffhd.v8i1.368.
  • [30] Bian M, Chen X, Zhang C, Jin H, Wang F, Shao J, et al. Magnesium isoglycyrrhizinate promotes the activated hepatic stellate cells apoptosis via endoplasmic reticulum stress and ameliorates fibrogenesis in vitro and in vivo. BioFactors. 2017;43:836-46. DOI: 10.1002/biof.1390.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dd521b18-52cd-4ad6-98c0-4083d4dabcb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.