Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This study presents the residual stress analysis for the twist extrusion (TE) process after the experiment and numerical simulation and the analysis of the crystallographic texture changes and changes in hardness before and after the TE process for an RSA-501 aluminium alloy (Al; Mg5%; Mn1.5%; Sc0.8%; Zr0.4%). Design/methodology/approach: Crystallographic textures were obtained with the PANAlytical Empyrean X-ray diffractometer. The stresses were measured by applying the X-ray method with the use of using the PROTO iXRD diffractometer. Findings: The use of severe plastic deformation processes in the mass of the material leads to a significant change difference in the stress distribution in the workpiece and a change in texture compared to the reference material. The stress distribution in the sample cross-section and stress values varied and depended on the stage of the twisting process to which the surface was subjected. The highest stress (about 600 MPa) appears at the peaks of the front surface when exiting the twist area die TE. Higher stress values at the edges of the specimen are caused by friction (deformation) of the material against the die surface. The TE process strengthened – the highest crystallographic texture background level was 49%. Practical implications: The conducted tests and the obtained results allow the determination of the process parameters and critical areas of the sample by carrying out a numerical simulation. Originality/value: Microhardness increases due to the TE process and the largest values were observed at the edges. This phenomenon is confirmed by the numerical simulation results presented in this paper.
Wydawca
Rocznik
Tom
Strony
5--28
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Street 1/15, 90-924 Łódź, Poland
autor
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Street 1/15, 90-924 Łódź, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska Street 141, 02-507 Warsaw, Poland
autor
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Street 1/15, 90-924 Łódź, Poland
Bibliografia
- [1] Z. Yan, J. Zheng, J. Zhu, Z. Zhang, Q. Wang, Y. Xue, High Ductility with a Homogeneous Microstructure of a Mg–Al–Zn Alloy Prepared by Cyclic Expansion Extrusion with an Asymmetrical Extrusion Cavity, Metals 10/8 (2020) 1102. DOI: https://doi.org/10.3390/met10081102
- [2] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals 57/2 (2008) 716-735. DOI: https://doi.org/10.1016/j.cirp.2008.09.005
- [3] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resources, Conservation and Recycling 125 (2017) 37-47. DOI: https://doi.org/10.1016/j.resconrec.2017.06.004
- [4] J.-K. Han, H.-J. Lee, J. Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Materials Science and Engineering: A 684 (2017) 318-327. DOI: https://doi.org/10.1016/j.msea.2016.12.067
- [5] R. Kulagin, A. Mazilkin, Y. Beygelzimer, D.G. Savvakin, I. Zverkova, D. Oryshych, H. Hahn, Influence of High Pressure Torsion on structure and properties of Zr-Ti-Nb alloy synthesized from TiH2, ZrH2 and Nb powders, Materials Letters 233 (2018) 31-34. DOI: https://doi.org/10.1016/j.matlet.2018.08.139
- [6] S.O. Rogachev, R.V. Sundeev, N.Y. Tabachkova, High pressure torsion-induced amorphous phase in a multilayer V-10Ti-5Cr/Zr-2.5Nb/V-10Ti-5Cr hybrid material, Materials Letters 234 (2019) 220-223. DOI: https://doi.org/10.1016/j.matlet.2018.09.112
- [7] K. Edalati, Z.A. Horita, A review on high-pressure torsion (HPT) from 1935 to 1988, Materials Science and Engineering: A 652 (2016) 325-352. DOI: https://doi.org/10.1016/j.msea.2015.11.074
- [8] B. Omranpour, L. Kommel, V. Mikli, E. Garcia, J. Huot, Nanostructure development in refractory metals: ECAP processing of Niobium and Tantalum using indirect-extrusion technique, International Journal of Refractory Metals and Hard Materials 79 (2019) 1-9. DOI: https://doi.org/10.1016/j.ijrmhm.2018.10.018
- [9] V.M. Segal, Severe plastic deformation: simple shear versus pure shear, Materials Science and Engineering: A 338/1-2 (2002) 331-344. DOI: https://doi.org/10.1016/S0921-5093(02)00066-7
- [10] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006) 33-39. DOI: https://doi.org/10.1007/s11837- 006-0213-7
- [11] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51/7 (2006) 881-981. DOI: https://doi.org/10.1016/j.pmatsci.2006.02.003
- [12] J. Sawicki, J. Świniarski, M. Stegliński, P. Byczkowska, Numerical analysis of twist extrusion pressing of Al-Mg-Mn-Sc-Zr scalmalloy, Archives of Metallurgy and Materials 63/3 (2018) 1385-1392. DOI: https://doi.org/10.24425/123816
- [13] M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Finite element analysis of plastic deformation in twist extrusion, Computational Materials Science 60 (2012) 194-200. DOI: https://doi.org/10.1016/j.commatsci.2012.03.035
- [14] U.M. Iqbal, V.S.S. Kumar, An analysis on effect of multipass twist extrusion process of AA6061 alloy, Materials and Design 50 (2013) 946-953. DOI: https://doi.org/10.1016/j.matdes.2013.03.066
- [15] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Materials Science and Engineering: A 503/1-2 (2009) 14-17. DOI: https://doi.org/10.1016/j.msea.2007.12.055
- [16] Y. Beygelzimer, D. Prilepo, R. Kulagin, V. Grishaev, O. Abramova, V. Varyukhin, M. Kulakov, Planar Twist Extrusion versus Twist Extrusion, Journal of Materials Processing Technology 211/3 (2011) 522-529. DOI: https://doi.org/10.1016/j.jmatprotec.2010.11.006
- [17] V. Segal, Review: Modes and Processes of Severe Plastic Deformation (SPD), Materials 11/7 (2018) 1175. DOI: https://doi.org/10.3390/ma11071175
- [18] K.J. Kurzydłowski, Microstructural refinement and properties of metals processed by severe plastic deformation, Bulletin of the Polish Academy of Sciences. Technical Sciences 52/4 (2004) 301-311.
- [19] M.I. Latypov, E.Y. Yoon, D.J. Lee, R. Kulagin, Y. Beygelzimer, M. Seyed Salehi, H.S. Kim, Micro-structure and mechanical properties of copper processed by twist extrusion with a reduced twist-line slope, Metallurgical and Materials Transactions A 45/4 (2014) 2232-2241. DOI: https://doi.org/10.1007/s11661-013-2165-1
- [20] W. H. El-Garaihy, D. M. Fouad, H. G. Salem, Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement, Metallurgical and Materials Transactions A 49/7 (2018) 2854-2864. DOI: https://doi.org/10.1007/s11661-018-4621-4
- [21] S.A.A. Akbari Mousavi, A.R. Shahab, M. Mastoori, Computational study of Ti–6Al–4V flow behaviors during the twist extrusion process, Materials and Design 29/7 (2008) 1316-1329. DOI: https://doi.org/10.1016/j.matdes.2007.07.009
- [22] S.A.A. Akbari Mousavi, S.R. Bahadori, A.R. Shahab, Numerical and experimental studies of the plastic strains distribution using subsequent direct extrusion after three twist extrusion passes, Materials Science and Engineering: A 527/16-17 (2010) 3967-3974. DOI: https://doi.org/10.1016/j.msea.2010.02.077
- [23] J.G. Kim, M. Latypov, N. Pardis, Y.E. Beygelzimer, H.S. Kim, Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion, Materials and Design 83 (2015) 858-865. DOI: https://doi.org/10.1016/j.matdes.2015.06.034
- [24] N. Shkatulyak, Effect of twist extrusion and subsequent rolling on the texture and microstructure of aluminium alloy, International Journal of Advances in Materials Science and Engineering 3/1 (2014) 15-25.
- [25] T. Bulzak, Z. Pater, J. Tomczak, K. Majerski, Technological and construction aspects of the process of hot extrusion of twist drills, Journal of Manufacturing Processes 45 (2019) 123-137. DOI: https://doi.org/10.1016/j.jmapro.2019.06.034
- [26] V.V.B.Y.Y. Usov, N.M. Shkatulyak, P.A. Bryukhanov, Texture of Titanium after twist extrusion, Physics Tech. High Press. 21/3, 102-109 (in Russian).
- [27] M. Nouri, H. Mohammadian Semnani, E. Emadoddin, Computational and experimental studies on the effect back pressure on twist extrusion process, Metals and Materials International 27/8 (2021) 2910-2918. DOI: https://doi.org/10.1007/s12540-020-00668-y
- [28] RS Alloys Overview, 2021. Available from: https://www.rsp-technology.com/site-media/user-uploads/rsp_alloys_overview_2018lr.pdf
- [29] V. Varyukhin, Y. Beygelzimer, R. Kulagin, O. Prokof'eva, A. Reshetov, Twist Extrusion: Fundamentals and Applications, Materials Science Forum 667-669 (2010) 31-37. DOI: https://doi.org/10.4028/www.scientific.net/MSF.667- 669.31
- [30] Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov, I. Korotchenkova, Features of twist extrusion: Method, structures and materials properties, Solid State Phenomena 114 (2006) 69-78. DOI: https://doi.org/10.4028/www.scientific.net/SSP.114.69
- [31] S.A. Asghar, A. Mousavi, S.R. Bahador, Investigation and numerical analysis of strain distribution in the twist extrusion of pure aluminum, JOM 63/2 (2011) 69-76. DOI: https://doi.org/10.1007/s11837-011-0032-3
- [32] S. Suwas, S. Mondal, Texture Evolution in Severe Plastic Deformation Processes, Materials Transactions 60/8 (2019) 1457-1471. DOI: https://doi.org/10.2320/matertrans.MF201933
- [33] M. Jahedi, M.H. Paydar, S. Zheng, I.J. Beyerlein, M. Knezevic, Texture evolution and enhanced grain refinement under high-pressure-double-torsion, Materials Science and Engineering: A 611 (2014) 29-36. DOI: https://doi.org/10.1016/j.msea.2014.05.081
- [34] A.P. Zhilyaev, T.R. McNelley, T.G. Langdon, Evolution of microstructure and microtexture in fcc metals during high-pressure torsion, Journal of Materials Science 42/5 (2007) 1517-1528. DOI: https://doi.org/10.1007/s10853-006-0628-0
- [35] A. Macháčková, Decade of Twist Channel Angular Pressing, A Review, Materials 13 (2020) 1725. DOI: https://doi.org/10.3390/ma13071725
- [36] R. Kocich, Deformation behavior of Al/Cu Cl and composite during twist channel angular pressing, Materials 13/18 (2020) 4047. DOI: https://doi.org/10.3390/ma13184047
- [37] S. Sanamar, H.-G. Brokmeier, N. Schell, Texture Gradient in a Rectangular Extruded Al60Mg40 Metal Matrix Composite, Metals 9/2 (2019) 167. DOI: https://doi.org/10.3390/met9020167
- [38] W. Zhang, H. Zhang, L. Wang, J. Fan, X. Li, L. Zhu, S. Chen, H.J. Roven, S. Zhang, Microstructure Evolution and Mechanical Properties of AZ31 Magnesium Alloy Sheets Prepared by Low-Speed Extrusion with Different Temperature, Crystals 10/8 (2020) 644. DOI: https://doi.org/10.3390/cryst10080644
- [39] O. Hilšer, S. Rusz, P. Szkandera, L. Čížek, M. Kraus, J. Džugan, W. Maziarz, Study of the Microstructure, Tensile Properties and Hardness of AZ61 Magnesium Alloy Subjected to Severe Plastic Deformation, Metals 8/10 (2018) 776. DOI: https://doi.org/10.3390/met8100776
- [40] Y. Wu, B. Deng, T. Ye, W. Liu, Z. Nie, X. Zhang, Effect of Pass Strain on the Microstructure, Texture and Mechanical Properties of AZ31 Magnesium Alloy Fabricated by High Strain Rate Multiple Forging, Metals 10/8 (2020) 1000. DOI: https://doi.org/10.3390/met10081000
- [41] T. Aizawa, T. Yoshino, T. Inohara, Micro-/Nano- Texturing of Aluminum by Precise Coining for Functional Surface Decoration, Metals 10/8 (2020) 1044. DOI: https://doi.org/10.3390/met10081044
- [42] C. Yang, Y. Mei, D. Meng, G. Zhu, S. Liu, Y. Peng, L. Wu, C. Zha, B. Shi, Mechanical Anisotropy Induced by Strain Path Change for AZ31 Mg Alloy Sheet, Metals 10/8 (2020) 1049. DOI: https://doi.org/10.3390/met10081049
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8f87e6d-ff7f-444e-9ca1-2f7f15084973