PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computer algorithm for the solution of the Astate equation for time-varying fractional discrete-time linear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Method for finding of the solution of the state equation for time-varying fractional discrete-time linear systems is proposed and computer algorithm is presented. The effectiveness of the proposed algorithm is demonstrated on numerical examples.
Wydawca
Rocznik
Strony
2--4
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., wzory
Twórcy
autor
  • Białystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, 15-351 Białystok
autor
  • Białystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Busłowicz M.: Simple analytic conditions for stability of fractional discrete-time linear systems with diagonal state matrix. Bull. Pol. Acad. of Sci., Techn. Sci., 2012, vol. 60, no. 4, pp. 809-814.
  • [2] Busłowicz M., Kaczorek. T.: Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci., 2009, vol. 19, no. 2, pp. 263-269.
  • [3] Czornik A., Nawrat A., Niezabitowski M., Szyda A.: On the Lyapunov and Bohl exponent of time-varying discrete linear systems. 20th Mediterranean Conf. on Control and Automation (MED), Barcelona, 2012, 194-197.
  • [4] Czornik A., Niezabitowski M.: Lyapunov Exponents for Systems with Unbounded Coefficients. Dynamical Systems: an International Journal, vol. 28, no. 2, 2013, 140-153.
  • [5] Czornik A., Nawrat A., Niezabitowski M.: On the Lyapunov exponents of a class of the second-order discrete-time linear systems with bounded perturbations. Dynamical Systems: an International Journal, vol. 28, no. 4, 2013, 473-483.
  • [6] Czornik A., Niezabitowski M.: On the stability of Lyapunov exponents of discrete linear system. Proc. of European Control Conf., Zurich, 2013, 2210-2213.
  • [7] Czornik A., Klamka J., Niezabitowski M.: On the set of Perron exponents of discrete linear systems, Proc. of World Congress of the 19th Int. Federation of Automatic Control, Kapsztad, 2014, 11740-11742.
  • [8] Kaczorek T.: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits and Systems, vol. 58, no. 6, 2011, 1203-1210.
  • [9] Kaczorek T.: Positivity and stability of time-varying discrete-time linear systems. Submitted to Conf. Transcomp 2015.
  • [10] Kaczorek T.: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, 2011.
  • [11] Oldham K. B., Spanier J.: The Fractional Calculus. Academic Press, New York and London 1974.
  • [12] Ostalczyk P.: Zarys rachunku różniczkowo-całkowego ułamkowych rzędów. Teoria i zastosowania w automatyce. Wyd. Pol. Łódzkiej, Łódź 2008.
  • [13] Podlubny I.: Fractional Differential Equations. San Diego: Academic Press, 1999.
  • [14] Zhang H., Xie D., Zhang H., Wang G.: Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach. ISA Trans., vol. 53, 2014, 1081-1086.
  • [15] Zhang J., Han Z., Wu H., Hung J.: Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching. Circuits Syst., Signal Process., vol. 33, 2014, 71-95.
  • [16] Zhong Q., Cheng J., Zhong S.: Finite-time H control of a switched discrete-time system with average dwell time. Advances in Difference Equations, vol. 191, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8d39c475-9767-42c4-a303-08a6db85caa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.