Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce an algebraically active disturbance rejection-based control solution for the trajectory tracking problem of an uncertain second-order flat system with unknown external disturbances. To this end, we first algebraically identify the system’s unknown dynamics and the external disturbances with a linear set of time-varying integral expressions for the output and the control signal. We use the identified dynamics on an online feedback cancellation scheme to linearize the second-order system and cancel the uncertainties. With a proportional-integral controller we stabilize the linearized system without the need to estimate the velocity and have feedback from it. We carry out the stability analysis using linear systems theory. Finally, we evaluate the effectiveness of the proposed controller in a partially known 2-DOF manipulator.
Rocznik
Tom
Strony
185--198
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
autor
- Center of Computing Research, National Polytechnic Institute, Av. Juan de Dios Bátiz S/N, 07738, Mexico City, Mexico
- Higher School of Computing, National Polytechnic Institute, Av. Juan de Dios Bátiz S/N, 07738, Mexico City, Mexico
autor
- Department of Automatic Control, Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
- Faculty of Physical and Mathematical Sciences, Autonomous University of Nuevo Leon, Av. Universidad S/N, 66451, Nuevo Leon, Mexico
autor
- Higher School of Mechanical and Electrical Engineering-Azcapotalco Unit, National Polytechnic Institute, Av. de las Granjas 682, 02550, Mexico City, Mexico
autor
- Interdisciplinary Professional Unit in Engineering and Advanced Engineering, National Polytechnic Institute, Av. Instituto Politécnico Nacional 2580, 07340, Mexico City, Mexico
Bibliografia
- [1] Aguilar-Ibanez, C., Sira-Ramirez, H., Acosta, J.Á . and Suarez-Castanon, M.S. (2021). An algebraic version of the active disturbance rejection control for second-order flat systems, International Journal of Control 94(1): 215-222.
- [2] Astolfi, A., Karagiannis, D. and Ortega, R. (2007). Nonlinear and Adaptive Control with Applications, Springer, Luxembourg.
- [3] Åström, K.J. and Eykhoff, P. (1971). System identification - A survey, Automatica 7(2): 123-162.
- [4] Åström, K.J. and Wittenmark, B. (1971). Problems of identification and control, Journal of Mathematical Analysis and Applications 34(1): 90-113.
- [5] Azhmyakov, V., Poznyak, A. and Gonzalez, O. (2013). On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach, Journal of Industrial and Management Optimization 9(3): 579-593.
- [6] Bartolini, G., Fridman, L., Pisano, A. and Usai, E. (2008). Modern Sliding Mode Control Theory: New Perspectives and Applications, Springer, New York.
- [7] Boltyansky, V. (1999). Robust maximum principle in minimax control, International Journal of Control 72(4): 305-314.
- [8] Chen, Z., Zheng, Q. and Gao, Z. (2007). Active disturbance rejection control of chemical processes, IEEE International Conference on Control Applications, CCA 2007, Singapore, pp. 855-861.
- [9] Cheney, E.W. and Kincaid, D.R. (2012). Numerical Mathematics and Computing, Cengage Learning, Boston.
- [10] Cortés-Romero, J., Jimenez-Triana, A., Coral-Enriquez, H. and Sira-Ramírez, H. (2017). Algebraic estimation and active disturbance rejection in the control of flat systems, Control Engineering Practice 61: 173-182.
- [11] Davila, J. and Poznyak, A. (2011). Dynamic sliding mode control design using attracting ellipsoid method, Automatica 47(7): 1467-1472.
- [12] de Jesús Rubio, J. (2016). Structure control for the disturbance rejection in two electromechanical processes, Journal of the Franklin Institute 353(14): 3610-3631.
- [13] de Jesús Rubio, J., Ochoa, G., Balcazar, R. and Pacheco, J. (2015). Uniform stable observer for the disturbance estimation in two renewable energy systems, ISA Transactions 58: 155-164.
- [14] Ding, S., Park, J.H. and Chen, C.-C. (2020). Second-order sliding mode controller design with output constraint, Automatica 112: 108704.
- [15] Dullerud, G.E. and Paganini, F. (2013). A Course in Robust Control Theory: A Convex Approach, Springer Science & Business Media, Luxembourg.
- [16] Edwards, C., Colet, E.F., Fridman, L., Colet, E.F. and Fridman, L.M. (2006). Advances in Variable Structure and Sliding Mode Control, Springer, New York.
- [17] Ferreira, A., Bejarano, F.J. and Fridman, L.M. (2010). Robust control with exact uncertainties compensation: With or without chattering?, IEEE Transactions on Control Systems Technology 19(5): 969-975.
- [18] Fliess, M. and Join, C. (2009). Model-free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control?, 15th IFAC Symposium on System Identification (SYSID 2009), Saint-Malo, France.
- [19] Fliess, M. and Join, C. (2013). Model-free control, International Journal of Control 86(12): 2228-2252.
- [20] Fliess,M. and Sira-Ramírez, H. (2003). An algebraic framework for linear identification, ESAIM: Control, Optimisation and Calculus of Variations 9: 151-168.
- [21] Fliess, M. and Sira-Ramirez, H. (2008). Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques, in H. Garnier and L. Wang (Eds), Identification of Continuous-Time Models from Sampled Data, Springer, London, pp. 363-391.
- [22] Freidovich, L.B. and Khalil, H.K. (2008). Performance recovery of feedback-linearization-based designs, IEEE Transactions on Automatic Control 53(10): 2324-2334.
- [23] Gao, Z., Huang, Y. and Han, J. (2001). An alternative paradigm for control system design, Proceedings of the 40th IEEE Conference on Decision and Control, 2001, Orlando, USA, pp. 4578-4585.
- [24] Gliklikh, Y.E. (2006). Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations, Abstract and Applied Analysis 2006, Article ID: 039786, DOI: 10.1155/AAA/2006/39786.
- [25] Guo, B.-Z. and Zhao, Z.-l. (2011). On the convergence of an extended state observer for nonlinear systems with uncertainty, Systems & Control Letters 60(6): 420-430.
- [26] Guo, B.-Z. and Zhao, Z.-L. (2013). On convergence of the nonlinear active disturbance rejection control for MIMO systems, SIAM Journal on Control and Optimization 51(2): 1727-1757.
- [27] Han, J. (2009). From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics 56(3): 900-906.
- [28] Kapitaniak, T. (2000). Chaos for Engineers: Theory, Applications, and Control, Springer, Heidelberg.
- [29] Khalil, H.K. (2017). High-Gain Observers in Nonlinear Feedback Control, SIAM, Philadelphia.
- [30] Khalil, H.K. and Praly, L. (2014). High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control 24(6): 993-1015.
- [31] Krstic,M., Kokotovic, P.V. and Kanellakopoulos, I. (1995). Nonlinear and Adaptive Control Design, Wiley, Hoboken.
- [32] Lafont, F., Balmat, J.-F., Pessel, N. and Fliess, M. (2015). A model-free control strategy for an experimental greenhouse with an application to fault accommodation, Computers and Electronics in Agriculture 110: 139-149.
- [33] Liu, K.-Z. and Yao, Y. (2016). Robust Control: Theory and Applications, Wiley, Hoboken.
- [34] Moreno-Valenzuela, J. (2007). Velocity field control of robot manipulators by using only position measurements, Journal of the Franklin Institute 344(8): 1021-1038.
- [35] Moreno-Valenzuela, J. (2019). A class of proportional-integral with anti-windup controllers for DC-DC buck power converters with saturating input, IEEE Transactions on Circuits and Systems II: Express Briefs 67(1): 157-161.
- [36] Moreno-Valenzuela, J., Santibáñnez, V. and Campa, R. (2008). On output feedback tracking control of robot manipulators with bounded torque input, International Journal of Control, Automation, and Systems 6(1): 76-85.
- [37] Ordaz, P., Alazki, H., Sánchez, B. and Ordaz-Oliver, M. (2023). On the finite time stabilization via robust control for uncertain disturbed systems, International Journal of Applied Mathematics and Computer Science 33(1): 71-82, DOI: 10.34768/amcs-2023-0006.
- [38] Parker, T.S. and Chua, L. (2012). Practical Numerical Algorithms for Chaotic Systems, Springer, New York.
- [39] Petersen, I.R. and Tempo, R. (2014). Robust control of uncertain systems: Classical results and recent developments, Automatica 50(5): 1315-1335.
- [40] Poznyak, A., Duncan, T., Pasik-Duncan, B. and Boltyanski, V. (2002). Robust maximum principle for multi-model LQ-problem, International Journal of Control 75(15): 1170-1177.
- [41] Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Basel.
- [42] Ramírez-Neria, M., Madonski, R., Luviano-Juárez, A., Gao, Z. and Sira-Ramírez, H. (2020). Design of ADRC for second-order mechanical systems without time-derivatives in the tracking controller, 2020 American Control Conference (ACC), Denver, USA, pp. 2623-2628.
- [43] Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juarez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum, ISA Transactions 53(4): 920-928.
- [44] Reyes, F. and Kelly, R. (1997). Experimental evaluation of identification schemes on a direct drive robot, Robotica 15(5): 563-571.
- [45] Romero, J.C., Juárez, A.L., Sira-Ramírez, H. and Rodríguez, C.G. (2014). Algebraic Identification and Estimation Methods in Feedback Control Systems, Wiley, Hoboken.
- [46] Rubio, J.D.J., Ochoa, G., Mujica-Vargas, D., Garcia, E., Balcazar, R., Elias, I., Cruz, D.R., Juarez, C.F., Aguilar, A. and Novoa, J.F. (2019). Structure regulator for the perturbations attenuation in a quadrotor, IEEE Access 7: 138244-138252.
- [47] Sanchez, T. and Moreno, J.A. (2021). Homogeneous output-feedback control with disturbance-observer for a class of nonlinear systems, International Journal of Robust and Nonlinear Control 31(9): 3686-3707.
- [48] Shtessel, Y., Edwards, C., Fridman, L. and Levant, A. (2014). Sliding Mode Control and Observation, Springer, New York.
- [49] Sira-Ramírez, H., Castro-Linares, R. and Puriel-Gil, G. (2014). An active disturbance rejection approach to leader-follower controlled formation, Asian Journal of Control 16(2): 382-395.
- [50] Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. and Zurita-Bustamante, E.W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, Oxford.
- [51] Tian, G. and Gao, Z. (2007). Frequency response analysis of active disturbance rejection based control system, IEEE International Conference on Control Applications, CCA 2007, Singapore, pp. 1595-1599.
- [52] Utkin, V., Guldner, J. and Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems, CRC Press, Boca Ratton.
- [53] Zhao, S. and Gao, Z. (2013). An active disturbance rejection based approach to vibration suppression in two-inertia systems, Asian Journal of Control 15(2): 350-362.
- [54] Zhou, W., Shao, S. and Gao, Z. (2009). A stability study of the active disturbance rejection control problem by a singular perturbation approach, Applied Mathematical Sciences 3(10): 491-508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9e1dc29-9805-4e81-bc5c-75730f426489