Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  active disturbance rejection control
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Autonomous vehicles are the most advanced intelligent vehicles and will play an important role in reducing traffic accidents, saving energy and reducing emission. Motion control for trajectory tracking is one of the core issues in the field of autonomous vehicle research. According to the characteristics of strong nonlinearity, uncertainty and changing longitudinal velocity for autonomous vehicles at high speed steering condition, the robust trajectory tracking control is studied. Firstly, the vehicle system models are established and the novel target longitudinal velocity planning is carried out. This velocity planning method can not only ensure that the autonomous vehicle operates in a strong nonlinear coupling state in bend, but also easy to be constructed. Then, taking the lateral location deviation minimizing to zero as the lateral control objective, a robust active disturbance rejection control path tracking controller is designed along with an extended state observer which can deal with the varying velocity and uncertain lateral disturbance effectively. Additionally, the feed for ward-feedback control method is adopted to control the total tire torque, which is distributed according to the steering characteristics of the vehicle for additional yaw moment to enhance vehicle handing stability. Finally, the robustness of the proposed controller is evaluated under velocity-varying condition and sudden lateral disturbance. The single-lane change maneuver and double-lane change maneuver under vary longitudinal velocity and different road adhesions are both simulated. The simulation results based on Matlab/Simulink show that the proposed controller can accurately observe the external disturbances and have good performance in trajectory tracking and handing stability. The maximum lateral error reduces by 0.18 meters compared with a vehicle that controlled by a feedback-feedforward path tracking controller in the single-lane change maneuver. The lateral deviation is still very small even in the double lane change case of abrupt curvature. It should be noted that our proposed control algorithm is simple and robust, thus provide great potential for engineering application.
EN
In this paper, the PLC-based (Programmable Logic Controller) industrial implementation in the form of the general-purpose function block for ADRC (Active Disturbance Rejection Controller) is presented. The details of practical aspects are discussed because their reliable implementation is not trivial for higher order ADRC. Additional important novelties discussed in the paper are the impact of the derivative backoff and the method that significantly simplifies tuning of higher order ADRC by avoiding the usual trial and error procedure. The results of the practical validation of the suggested concepts complete the paper and show the potential industrial applicability of ADRC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.