Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Current environmental directives to conserve resources and to divert waste streams have generated significant interest in mineral recycling. In this respect, this preliminary study has demonstrated that lithium metasilicate can be prepared by hydrothermal reaction between waste container glass and lithium hydroxide solutions at 100 °C. Minor proportions of calcium hydroxide, calcite, lithium carbonate and tobermorite were also produced during the reaction. Percentage crystallinity and proportion of lithium metasilicate in the reaction product were found to increase as functions of lithium hydroxide concentration (between 1 and 4 M). This research has also shown that the lithium metasilicate phase can take up 6.4 mmol/g of Zn2+ ions after 24 h during batch sorption. Further work to optimise the yield and to appraise the antimicrobial properties of Zn2+-bearing lithium metasilicate is now warranted.
Słowa kluczowe
Rocznik
Tom
Strony
685--694
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
autor
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
autor
- School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom
Bibliografia
- AYADI, A., STITI, N., BOUMCHEDDA, K., RENNAI, H., LERARI, Y., 2011, Elaboration and characterization of porous granules based on waste glass, Powder Technol. 208, 423-426.
- CHEARY, R.W., COELHO, A.A., 1992, A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Cryst. 25, 109-121.
- COLEMAN, N.J., 2009, Aspects of the in vitro bioactivity and antimicrobial properties of Ag+- and Zn2+-exchanged 11 Å tobermorites J. Mater. Sci.: Mater. Med. 20, 1347-1355.
- COLEMAN, N.J., LEWIS, S.P., MENDHAM, A.P., TRIVEDI, V., 2010, Zn2+-exchange kinetics and antimicrobial properties of synthetic zirconium umbite (K2ZrSi3O9•H2O), J. Porous Mater. 17, 747-757.
- COLEMAN, N.J., LI, Q., RAZA, A., 2014, Synthesis, structure and performance of calcium silicate ion exchangers from recycled container glass, Physicochem. Probl. Miner. Process. 50, 5-16.
- CRUZ, D., BULBULIAN, S., 2003, Synthesis of lithium silicate tritium breeder powders by a modified combustion method, J. Nucl. Mater. 312, 262–265.
- EL-KAMASH, A.M., ZAKI, A.A., ABED EL GELEEL, M., 2005, Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A, Hazard. Mater. B127, 211-220.
- KARAMBERI, A, MOUTSATSOU A., 2005, Participation of coloured glass cullet in cementitious materials, Cem. Concr. Compos. 27, 319-327.
- KORKOSZ, A., PTASZYNSKA, A., HANEL, A., NIEWIADOMSKI, M., 2012, Cullet as a filter medium for swimming pool water treatment, Physicochem. Probl. Miner. Process. 48, 295-301.
- MATTEUCCI, F., DONDI, M., GUARINI, G., 2002, Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles, Ceram. Int. 28, 873-880.
- ORTIZ-LANDEROS, J., CONTRERAS-GARCÍA, M.E., GÓMEZ-YÁÑEZ, C., PFEIFER, H., 2011, Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: (I) synthesis, structural and microstructural characterization, J. Solid State Chem., 184, 1304-1311.
- PFEIFER, H., MEILER, W., DEININGER, D., 1983, NMR of organic compounds adsorbed on porous solids, Annu. Rep. NMR Spectrosc. 15, 291-356.
- PFEIFER, H., BOSCH, P., BULBULIAN, S., 1998, Synthesis of lithium silicates, J. Nucl. Mater. 257, 309-317.
- PURNA CHANDRA RAO, G., SATYAVENI, S., RAMESH, A., A., SESHAIAH, K., MURTHY, K.S.N., CHOUDARY, N.V., 2006, Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite, J. Environ. Manag. 81, 265-272.
- QUI, W., ZHENG, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J. 145, 483-488.
- TANG, T., CHEN, P., LUO, W., LUO, D., WANG, Y., 2012, Crystalline and electronic structures of lithium silicates: A density functional theory study, J. Nucl. Mater. 420, 31-38.
- VELIS, C.A., FRANCO-SALINAS, C., O’SULLIVAN, C., NAJORKA, J., BOCCACCINI, A.R., CHEESEMAN, C.R., 2014, Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology, Environ. Sci. Technol. 48, 7527-7535.
- YANG, A., WANG, H., LI, W., SHI, J., 2012, Synthesis of lithium metasilicate powders at low temperature via mechanical milling, J. Am. Ceram. Soc. 95, 1818-1821.
- ZHANG, B., NIEUWOUDT, M., EASTEAL, A.J., 2008, Sol–gel route to nanocrystalline lithium metasilicate particles, J. Am. Ceram. Soc. 91, 1927-1932.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0d42474-e692-4380-9f66-542082126c64