PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arsen w technice i środowisku

Identyfikatory
Warianty tytułu
EN
Arsenic in engineering and environment
Języki publikacji
PL
Abstrakty
EN
The arsenic is an element which comes in the twentieth place in respect of its dissemination in the earth's crust and fourteenth in seawater. Average concentrations of arsenic in the earth's crust are reported to be 1,5 - 6 mg/kg. In the geosphere arsenic occurs connected especially with sulfide minerals. As a chalcophylic element it is commonly present in sulfide ores of other metals, mainly pyrites, chalcopyrites, galenite and zincblende. Arsenic is a constituent of more than 200 minerals. Sources of arsenic in the environment are natural and anthropogenic in essence. More than several dozens tons of arsenic are released annually to the terrestrial and aquatic environment and to the atmosphere. Natural sources of arsenic include volcanic activity, weathering, soil erosion, forest and grass fires and biological activity. Anthropogenic sources are mainly smelting of non-ferrous metal ores and burning of fossil fuel in household and power plants. Anthropogenic sources also include the production and application of arsenic compounds. From ages they were used in medicine, metallurgy and dye-production. In the last few hundred years arsenic compounds were also used in agriculture, wood-preservation, warfare production and semiconductor industry. In XVIII and XIX centuries the essential usage of arsenic was medicine. Until the discovery of antibiotics arsenotherapy was applicable in the treatment of a majority of diseases . In the XX century the most important applications arsenic compounds have found in agriculture and wood-preservation. In the first half of that century about 90% of the arsenic produced was used to manufacture a variety of pesticides, herbicides and fungicides. The utilization of arsenic compounds was systematically limited along with increasing of the ecological consciousness. Nowadays the use of arsenic in medicine and agricultural is declining. The most of the produced arsenic is used to manufacture Chromated Copper Arsenate (CCA) a wood preservative which is going to be replaced by alternative preservatives in the near futur. Small amounts of arsenic are utilized in the semiconductor industry, metallurgy and in the manufacturing of glass. Most of the arsenic is produced in form of arsenic trioxide, which is a by-product during the smelter of nonferrous ores. Arsenic compounds are mobile in environment and occur in natural waters, soils and in the air. Arsenic is mainly transported by water among environmental media and it is undergoing chemical and physical transformations (oxidation/reduction, metylation/demetylation, adsorption/desorption). In natural environment arsenic occurs mainly as inorganic species: arsenate and arsenite. In these chemical compounds certain bacteria can replace hydroxyl groups by methyl groups forming methyl derivatives, mainly monomethyl arsonic acid (MMAA) and dimethyl arsenic acid (DMAA). Methylated arsenic species can be transformed by bacteria, fungi and yeasts under anaerobic conditions to volatile forms of arsenic: monomethylarsine (MMA), dimethylarsine (DMA), trimethylarsine (TMA) and arsine (AsH3). In the air arsenic exists mainly adsorbed on particle matter in the form of arsenic trioxide, arsenate and arsenite. Arsenic compounds are toxic for humans and animals. The toxicity depends mainly on the chemical forms and oxidation states of arsenic, the most toxic are inorganic arsenites. Ingestion of a large dose of inorganic arsenicals can lead to death. A long-term exposure to arsenic increases risks of cancer in skin, lungs, bladder and kidney. Inorganic arsenicals have been classified as Group I carcinogens. This review represents a comprehensive knowledge about the present and old applications of arsenic, the anthropogenic sources of this element, the circulation of arsenic in the environment and its impact on human health.
Rocznik
Strony
353--386
Opis fizyczny
Bibliogr. 141 poz., schem., tab., wykr.
Twórcy
  • Katedra Technologii Chemicznej, Wydział Inżynieryjno-Ekonomiczny, Akademia Ekonomiczna we Wrocławiu, ul. Komandorska 118/120, 53-345 Wrocław
autor
  • Katedra Technologii Chemicznej, Wydział Inżynieryjno-Ekonomiczny, Akademia Ekonomiczna we Wrocławiu, ul. Komandorska 118/120, 53-345 Wrocław
Bibliografia
  • [1] http://bicn.com/acic.
  • [2] A. Karczewska, A. Bogda, A. Szulc, D. Czwarkiel, S. Lizurek, Geophvsica1 Research Abstracts. 20Ct, 6.
  • [3] T.A. Przylibski, Environmental Radioactivity; 2001, 57, 87.
  • [4] National Research Council, Medical and Biological Effects of Environmental Pollutants. Arsenic, National Academy of Sciences, Washington 1977.
  • [5] B.K. Mandal, K.T. Suzuki, Talanta, 2002, 58, 201.
  • [6] J. Matschullat, The Sci. Total Environ., 2000, 249, 297.
  • [7] W.R. Cullen, K.J. Reimer, Chem. Rev., 1989, 89, 713.
  • [8] W.T. Frankenberger, Jr., Ed., Environmental Chemistry of Arsenic, Marcel Dekker, New York 2002.
  • [9] R.E. Kirk, D.F. Othmer, Encyclopedia of Chemical Technology, 3rd ed. 1978–1984.
  • [10] M. Bissen, F.H. Frimmel, Acta Hydroch. Hydrob., 2003, 31, 9.
  • [11] Toxicological profile of arsenic, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, 2000.
  • [12] J.C. Ng, Ed., Environmental Health Criteria 224: Arsenic and arsenic compounds, World Health Organization, 2001.
  • [13] J.R. Loebenstein, The materials flow of arsenic in the United States, Bureau of Mines Information Circular, IC 9382, 1994.
  • [14] Air quality guidelines for Europe, 2 ed., World Health Organization, Regional Publications, European Series, No. 91.
  • [15] A.E. Schulman, Ed., Arsenic occurrence in public drinking water supplies, Environmental Protection Agency (EPA), EPA-815-R-00-023, Washington 2000.
  • [16] P.L. Smedley, D.G. Kinniburgh, Appl. Geochem. 2002.17, 517.
  • [17] J. Pantano, Arsenic concentrations in water at mining sites, U.S. EPA workshop „Managing Arsenic Risks to the Environment: Characterization of Waste, Chemistry, and Treatment and Disposal”, May 2001.
  • [18] A. Black, D. Craw, International Journal of Coal Geology; 2001, 45, 181.
  • [19] M. Chae Jung, I. Thornton, H.-T. Chon, The Sci. Total Environ., 2002, 295, 81.
  • [20] A. Garcia-Sanchez, E. Alvarez-Ayuso, Journal of Geochemical Exploration, 2003. 80, 69.
  • [21] F. Baroni, A. Boscagli, L.A. Di Leila, G. Protano, F. Riccobono, Journal of Geochemical Exploration, 2004, 81. 1.
  • [22] F. Frau, C. Ardau, Appl. Geochem., 2003, 18, 1373.
  • [23] E. Ferreira da Silva, Ch. Zhang, L. Serrano Pinto, C. Patinha, P. Reis, Appl. Geochem., 2004, 19, 887.
  • [24] G. Riveros, T.A. Utigard, J. Hazard. Mater. 2000, B77, 241.
  • [25] L. Charlet, A.A. Ansari, G. Lespagnol, M. Musso, The Sci. Total Environ., 2001, 277, 133.
  • [26] H. Galbraith, K. LeJeune, J. Lipton, Environ. Toxicol. Chem., 1995, 14, 1895.
  • [27] I. Meyer, J. Heinrich, U. Lippold, Environ. Res. Section A, 1999, 81, 32.
  • [28] Ch. J. Shih, Ch.F. Lin, Chemosphere, 2003, 53, 691.
  • [29] Power plants and arsenic, Environmental Issues, Electric Power Research Institute (EPRI) USA 2003.
  • [30] T. Zeng, A.F. Sarofim, Combust. Flame, 2001, 126, 1714.
  • [31] A. Shraim, X. Cui, S. Li, J.C. Ng, J. Wang, Y. Jin, Y. Liu, L. Guo, D. Li, S. Wang, R. Zhang, S. Hirano, Toxicol. Lett., 2003, 137, 35.
  • [32] B. He, L. Liang, G. Jiang, Sci. Total Environ., 2002,296, 19.
  • [33] Z. Ding, B. Zheng, J. Long, H.E. Belkin. R.B. Finkelman, Ch. Chen, D. Zhou, Y. Zhou, Appl. Geochem., 2001, 16, 1353.
  • [34] D. An., Y. G. He, Q.X. Hu, Fluoride, 1997,30.29, streszczenie [w:] Fuel and Energy Abstracts, July 1997, 267.
  • [35] A.I. Karayigit, D.A. Spears, C.A. Booth. Int. J. Coal Geol., 2000,44.1, streszczenie [v.:] Fuel and Energy Abstracts, January 2002, 2.
  • [36] E. Mihalikova, E. Fabianova. Arch. Ochr. Środowiska, 1996, (3-4), 175.
  • [37] W.E. Brooks, Minerals Yearbook-Arsenic, U.S. Geological Survey, 2002.
  • [38] W.E. Brooks, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey. 2004.
  • [39] D.A. Buckingham. W.E. Brooks, Historical statistics for mineral and material commodities in the United States-Arsenic, U.S. Geological Survey, report 01-006, 2002.
  • [40] D.L. Edelstein, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 1997.
  • [41] R.G. Reese, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 1998.
  • [42] R.G. Reese, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 1999.
  • [43] R.G. Reese, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 2000.
  • [44] R.G. Reese, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 2001.
  • [45] RG. Reese, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 2002.
  • [46] W.E. Brooks, Mineral Commodity Summaries-Arsenic, U.S. Geological Survey, 2003.
  • [47] S. Waxman, K.C. Anderson, The Oncologist, 2001, 6(s2), 3.
  • [48] Karen H. Antman, The Oncologist, 2001, 6(s2), 1.
  • [49] R Korzybski, T. Formański, Chemia farmaceutyczna, PZWL, Warszawa 1985.
  • [50] Z.-G. Wang, R. Rivi, L. Delva, A. Konig, D.A. Scheinberg, C. Gambacorti-Passerini, J.L. Gabrilove, RP. Warrell, P.P. Pandolfi, Blood, 1998, 92, 1497.
  • [51] J. Supniewski, Farmakologia, PZWL, Warszawa 1959.
  • [52] J. Keiser, Pharmacological investigations on current and new drugs for treatment of human African trypanosomiasis, praca doktorska, Uniwersytet w Bazylei, Bazylea 1999.
  • [53] J. Dadlez, P. Kubikowski, Farmakologia i toksykologia leków, PZWL, Warszawa 1958.
  • [54] D. Legros, G. Olivier, Treatment of human African Trypanosomiasis: Current Situation and R&D needs, Materiały konferencyjne „The crisis of neglected diseases: Developing treatments and ensuring access”, marzec 2002, Nowy Jork.
  • [55] T. Tkaczyński, D. Tkaczyńska, Synteza i technologia chemiczna leków, PZWL, Warszawa 1984.
  • [56] K. Senior, Drug Discovery Today, 2002, 7, 156.
  • [57] W.H. Miller, Jr, The Oncologist, 2002, 7(sl), 14.
  • [58] D.M. Rust, S.L. Soignet, The Oncologist, 2000, 6(s2), 29.
  • [59] K.P.Y. Siu, J.Y.W. Chan, K.P. Fung, Life Sciences, 2002, 71, 275.
  • [60] Z.Y. Wang, Z. Chen, The Lancet Oncology, 2000, 1, 101.
  • [61] A. Bode, Z. Dong, Drug Resistance Updates, 2000, 3, 21.
  • [62] A. Stachlewska-Wróblowa, Analiza skażeń chemicznych, Ministerstwo-Obrony Narodowej, Inspektorat Obrony Cywilnej Kraju, Warszawa 1985.
  • [63] F.-A. Pitten, G. Mueller, P. Konig, D. Schmidt, K. Thurow, A. Kramer, Sei. Total Environ., 1999, 226, 237.
  • [64] Encyklopedia Techniki CHEMIA, WNT, Warszawa 1993.
  • [65] Jerzy Chodkowski, Red., Słownik chemii praktycznej, Wiedza Powszechna, Warszawa 1992.
  • [66] R Haas, A. Krippendorf, ESPR - Environ Sei & Pollut Res, 1997, 3, 123.
  • [67] D.L. Corwin, A. David, S. Goldberg, J. Contam. Hydrol., 1999, 39, 35.
  • [68] M. Kohler, K. Hofmann, F. Volsgen, K. Thurow, A. Koch, Chemosphere, 2001, 42, 425.
  • [69] Ronald S. Oremland, John F. Stolz, Science, 2003, 300, 939.
  • [70] D.L. Edelstein, Minerals Yearbook -Arsenic, U.S. Geological Survey, 1994.
  • [71] D.L. Edelstein, Minerals Yearbook-Arsenic, U.S. Geological Survey, 1995.
  • [72] D.L. Edelstein, Minerals Yearbook-Arsenic. U.S. Geological Survey, 1996.
  • [73] R.G. Reese, Minerals Yearbook—Arsenic, U.S. Geological Survey, 1997.
  • [74] R.G. Reese, Minerals Yearbook-Arsenic, U.S. Geological Survey, 1998.
  • [75] R.G. Reese, Minerals Yearbook-Arsenic, U.S. Geological Survey, 1999.
  • [76] R.G. Reese, Minerals Yearbook-Arsenic, U.S. Geological Survey, 2000.
  • [77] R.G. Reese, Minerals Yearbook-Arsenic, U.S. Geological Survey, 2001.
  • [78] J.A. Hingston, C.D. Collins, R.J. Murphy, J.N. Lester, Environ. Pollut., 2001, H I, 53.
  • [79] C.F. Balasoiu, G.J. Zagury, L. Deschenes, The Sei. Total Environ., 2001, 28U. 239.
  • [80] C. Cox, Journal of Pesticide Reform, 1991, 11, 2.
  • [81] Chem. Eng. News, 2002, 80, 26.
  • [82] Jerzy Chodkowski, Red., Słownik chemiczny, Wiedza Powszechna, Warszawa 1995.
  • [83] J.F. Ferguson, J. Gavis, Water Res., 1972, 6, 1259.
  • [84] T. Viraraghavan, K.S. Subramanian, J.A. Aruldoss, Water Sei. Technol. 1999,40, 69.
  • [85] L. Romero, H. Alonso, P. Campano, L. Fanfani, R Cidu, C. Dadea, T. Keegan, I. Thornton, M. Farago, Appl. Geochem., 2003, 18, 1399.
  • [86] S.J. McLaren, N.D. Kim, Environ. Pollut., 1995, 90, 67.
  • [87] G.E. Millward, H J. Kitts, S.D.W. Comber, L. Ebdon, A.G. Howard, Estuarine Coastal and Shelf Science, 1996, 43, 1.
  • [88] A.G. Howard, S.D.W. Comber, D. Kifle, E.E. Antai, D.A. Purdie, Estuarine Coastal and Shelf Science, 1995, 40, 435.
  • [89] J. Bundschuh, B. Farias, R. Martin, A. Storniolo, P. Bhattacharya, J. Cortes, G. Bonorino, R. Albouy, Applied Geochemistry, 2004,19, 231.
  • [90] S.S. Farias, V.A. Casa, C. Vazquez, L. Ferpozzi, G.N. Pucci, l.M. Cohen, The Sei. Total Environ. 2003, 309, 187.
  • [91] R. Rodriguez, J.A. Ramos, A. Armienta, Appl. Geochem., 2004,19,245.
  • [92] A. Aiuppa, W. D’Alessandro, C. Federico. B. Palumbo, M. Valenza, Appl. Geochem., 2003, 18, 1283.
  • [93] H.M. Anavvar, J. Akai, K.M.G. Mostofa, S. Safiullah, S.M. Tareq, Environment International, 2002, 27, 597.
  • [94] K.M. Ahmed, P. Bhattacharya, M.A. Hasan, S.H. Akhter, S.M.M. Alam, M.A.H. Bhuyian, M.B. Imam, A.A. Khan, O. Sracek, Appl. Geochem., 2004, 19, 181.
  • [95] R.T. Nickson, J.M. McArthur, P. Ravenscroft, W.G. Burgessa, K.M. Ahmed, Appl. Geochem., 2000, 15, 403.
  • [96] D. Stuben, Z. Berner, D. Chandrasekharam, J. Karmakar, Appl. Geochem., 2003, 18, 1417.
  • [97] H.C. Flynn, V. Me Mahon, G. Chong Diaz, C.S. Demergasso, P. Corbisier, A.A. Meharg, G.I. Paton, The Sei. Total Environ., 2002, 286, 51.
  • [98] R.D. Foust Jr., P. Mohapatra, A.-M. Compton-O’Brien, J. Reifel, Appl. Geochem., 2004, 19,251.
  • [99] S.C. Peters, J.D. Blum, Appl. Geochem., 2003, 18, 1773.
  • [100] F. McLellan, The Lancet, 2002, 359, 1127.
  • [101] M. Rahman, J. Health Popul. Nutr., 2002, 20, 193.
  • [102] Z. Adeel, Global Environmental Change, 2002, 12, 69.
  • [103] B.K. Caldwell, J.C. Caldwell, S.N. Mitra, Social Science & Medicine, 2003,56,2089.
  • [104] F. Pearce, New Scientist, 2003, 179, 4.
  • [105] J.T. O’Connor, Water Engineering & Management, 2002, 149, 35.
  • [106] H. Yokota, K. Tanebe, M. Sezaki, Y. Akiyoshi, T. Miyata, K. Kawahara, S. Tsushima, H. Hironaka, H. Takafuji, M. Rahman, Sk.A. Ahmad, M.H.S.U. Sayed, Engineering Geology, 2001, 60, 323.
  • [107] T. Roychovvdhury, T. Uchino, H. Tokunaga, M. Ando, Chemosphere, 2002, 49, 605.
  • [108] T. Roychowdhury, H. Tokunaga, M. Ando, The Sei. Total Environ., 2003, 308, 15.
  • [109] P.K. Pandey, S. Yadav, S. Nair, A. Bhui, Environment International, 2002, 28, 235.
  • [110] R.T. Nickson, J.M. McArthur, P. Ravenscroft, W.G. Burgess. K.M. Ahmed, Appl. Geochem., 2000. 15, 403.
  • [1l1] J- Akai, K. Izumi, H. Fukuhara, H. Masuda, S. Nakano, T. Yoshimura, H. Ohfuji, H.Md. Anavvar. K. Akai, Appl. Geochem., 2004, 19, 215.
  • [112] K.M. Ahmed, P. Bhattacharya, M.A. Hasan, S.H. Akhter, S.M.M. Alam, M.A.H. Bhuyian. M.B. Imam, A.A. Khan, O. Sracek, Appl. Geochem., 2004, 19,181.
  • [113] H.M. Anawar, J. Akai, K. Komaki, H. Terao, T. Yoshioka, T. Ishizuka, S. Safiullah, K. Kato, Journal of Geochemical Exploration, 2003, 77, 109.
  • [114] T. Roychowdhury, H. Tokunaga, M. Ando, The Sei. Total Environ., 2003, 308, 15.
  • [1 15] D. Chakraborti, S.C. Mukherjee, S. Pati, M.K. Sengupta, M.M. Rahman, U.K. Chowdhury. D. Lodh, Ch.R. Chanda, A.K. Chakraborti, G.K. Basu, Environ. Health Perspect., 2003,111,1194.
  • [116] C.J. Langdon, T.G. Piearce, A.A. Meharg, K. Semple, Environ. Pollut., 2003, 124, 361.
  • [117] D.J. Hewitt, G.C. Millner, A C. Nye, H.E Simmons, Environ. Res., 1995, 68, 73.
  • [118] A. Chatteijee, A. Mukheijee, The Sei. Total Environ., 1999, 225, 249.
  • [119] V. Cappuyns, S.Van Herreweghe, R Swennen, R. Ottenburgs, J. Deckers, The Sei. Total Environ., 2002, 295, 217.
  • [120] R. Turpeinen, M. Pantsar-Kallio, M. Haggblom, T. Kairesalo, The Sei. Total Environ., 1999, 236, 173.
  • [121] D. Ahmann, Impact of microorganisms on arsenic geochemistry, U.S. EPA workshop „Managing Arsenic Risks to the Environment: Characterization of Waste, Chemistry, and Treatment and Disposal”, May 2001.
  • [122] R. Turpeinen, M. Pantsar-Kallio, T. Kairesalo, The Sei. Total Environ., 2002, 285, 133.
  • [123] F. Oberacker, D. Maier, M. Maier, Vom Wasser, 2003, 99, 79.
  • [124] J. Brandys, Red., Toksykologia. Wybrane zagadnienia, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 1999.
  • [125] F.W. Pontius, K.G. Brown, Ch.-J. Chen, J. AWWA, 1994, 86, 52.
  • [126] T. Bogdanik, Red., Toksykologia kliniczna, PZWL, Warszawa 1988.
  • [127] H. Shi, X. Shi, K. Jian Liu, Mol. Celi. Biochem., 2004, 255, 67.
  • [128] P.B. Tchounwou, J.A. Centeno, A.K. Patlolla, Mol. Celi. Biochem., 2004, 255, 47.
  • [129] W. Seńczuk, Toksykologia, wyd. 4, PZWL, Warszawa, 2002.
  • [130] Ch.O. Abernathy, D.J. Thomas, R.L. Calderon, Journal of Nutrition, 2003. 133(5S), 1536S.
  • [131] Ch.O. Abernathy, Y.-P. Liu, D. Longfellow, H.V. Aposhian, B. Beck, B. Fowler, R. Goyer, R. Menzer, T. Rossman, C. Thompson, M. Waalkes, Environ. Health Perspect., 1999, 107. 593.
  • [132] A.H. Smith, M.M.H. Smith , Toxicol., 2004, 198, 39.
  • [133] Rozporządzenie Ministra Zdrowia z dnia 4 września 2000 r., Dz. U. Nr 82, poz. 937.
  • [134] J.T. O’Connor, Water Engineering & Management, 2002, 149, 18.
  • [135] Wielki Słownik Medyczny, PZWL, Warszawa 1996.
  • [136] J.C. Ng, J. Wang, A. Shraim, Chemosphere, 2003, 52, 1353.
  • [137] K.G. Brown, G.L. Ross, Reguł. Toxicol. Pharm., 2002,36, 162.
  • [138] K.A. Graeme, Ch.V. Pollack, The Journal of Emergency Medicine, 1998, 16, 45.
  • [139] A.H. HoII, Toxicol. Lett., 2002, 128, 69.
  • [140] P. Kurttio, E. Pukkala, H. Kahelin, A. Auvinen, J. Pekkanen, Environ. Health Perspect., 1999, 107, 705.
  • [141] M. Vahter, Toxicol., 2002, 181-182, 211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0006-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.