Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A spent vanadium catalyst, from the plant of metallurgical type, was leached in a sulfuric acid solution to recover vanadium and potassium compounds. The effect of time, temperature, concentration of acid, catalyst particle size and phase ratio was studied. Additionally the concentration of iron, copper, zinc, arsenic and lead compounds was determined. The flow sheet for the proposed process of spent vanadium catalyst leaching is presented.
Czasopismo
Rocznik
Tom
Strony
49--53
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Faculty of Chemistry, Department of Chemical Technology, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń, Poland, mazur@chem.umk.pl
Bibliografia
- 1. Grzesiak, P. (2006). Utilization of industrial waste from sulfuric acid production processes. Przem. Chem. 8–9, 1015- 1019 (in Polish).
- 2. Grzesiak, P. (2005). Vanadium catalysts for the oxidation of SO2. Poznań, Poland: WN IOR (in Polish).
- 3. Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Extraction of vanadium compounds from the used vanadium catalyst with the potassium hydroxide solution. Polish J. Chem. Technol. 1(12), 23–28, DOI: 10.2478/v10026-010-0005-2.
- 4. Grobela, M. & Grzesiak, P. (2007). The infl uence of iron compounds in the sulfuric acid catalyst on the SO2 oxidation process. Polish J. Chem. Technol. 1(9), 2–6, DOI: 10.2478/v10026-007-00022.
- 5. Grzesiak, P., Grobela, M. & Motała, M. (2007). The infl uence of the catalyst worktime on SO2 emission quantity from the sulfuric acid system and the catalyst waste material. Polish J. Chem. Technol. 3(9), 134–137, DOI: 10.2478/v10026- 007-0073-0.
- 6. Trypuć, M., Mazurek, K., Kiełkowska, U. & Drużyński, S. (2007). Utilization of used contact masses from the oxidation state of sulfur(IV) oxide to sulfur(VI) oxide. Pol. J. Chem. Technol. 9(3), 26–28, DOI: 10.2478/v10026-007-0047-2.
- 7. Mazurek, K., Trypuć, M., Białowicz, K. & Drużyński, S. (2008). The infl uence of leaching solution pH and addition of peroxide hydrogen on the recovery of some components from the used vanadium catalyst with urea solutions. Pol. J. Chem. Technol. 10(4), 34–36, DOI: 10.2478/v10026-008-0044-0.
- 8. Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Recovery of vanadium, potassium and iron from a spent catalyst using urea solution. Hydrometallurgy 103, 19–24, DOI: 10.1016/j. hydromet.2010.02.008.
- 9. Khorfan, S., Wahoud, A. & Reda, Y. (2001). Recovery of vanadium pentaoxide from spent catalyst used in the manufacture of sulphuric acid. Periodica Polythechnica Ser. Chem. Eng. 45(2), 131–137.
- 10. Mohanty, J., Rath, P.C., Bhattacharya, I.N. & Paramguru, R.K. (2011). The recovery of vanadium from spent catalyst: a case study. Mineral Processing and Extractive Metallurgy 120, 56–60, DOI: 10.1179/037195510X12772935654909.
- 11. Zeng, L. & Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: metallurgical processes. Hydrometallurgy 98, 1–9, DOI: 10.1016/j.hydromet.2009.03.010.
- 12. Zeng, L. & Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part II: separation and purifi cation. Hydrometallurgy 98, 10–20, DOI:10.1016/j.hydromet.2009.03.012.
- 13. Magnani, J.L., Kachan, G.C. & Ferreira, N.L. (2000). Vanadium recovery by leaching in spent catalyst for sulfuric acid production. Rev. Ciencia Technol. 8, 85–90.
- 14. Lozano, L.J. & Juan, D. (2001). Leaching of vanadium from spent sulphuric acid catalysts. Miner. Eng. 5, 543–546, DOI:10.1016/S0892-6875(01)00042-5.
- 15. Brouwer, P. (2006). Theory of XRF. Almelo, Netherlands: Panalytical.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPS2-0065-0044