PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of project results on a GIS platform and its impact on conservation strategies

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Integracja wyników projektu na platformie GIS i jej wpływ na strategię konserwatorską
Języki publikacji
EN
Abstrakty
EN
The geographic information system (GIS) has become a very popular and useful tool to aggregate and process spatial data. In this paper, the implementation of data obtained during survey seasons at the El Fuerte de Samaipata (Bolivia) archaeological site and results of data analysis on the GIS platform are presented. In addition to the thematic layers, a description of the sectors and archaeological relics was added to the whole system. The implemented layers are related to orthoimages created from terrestrial laser scanning (TLS) and from close range photogrammetry (in visual, spectral, and infrared light), raw photos of petroglyphs, a highly detailed vector plan of the site, conservation risk maps, new spatial divisions, description layers, and a digital terrain model (DTM) based on the results of TLS. Such a system, with an implemented DTM, allows rainwater runoff and its impact on the archaeological site to be analysed. Thus, the paper presents a study on some hydrological conditions of the Samaipata rock. It is part of the larger research project “Architectural examination and complex documentation of Samaipata (El Fuerte de Samaipata/Bolivia) site from the World Heritage List”. The results of this study are considered mainly from the point of view of conservation recommendations and strategies. Same aspects, however, may influence future studies on the chronology and cultural affiliation of the Samaipata rock carvings.
PL
System informacji geograficznej (GIS) stał się bardzo popularnym i użytecznym narzędziem do agregowania i przetwarzania danych przestrzennych. W niniejszym artykule przedstawiono implementację danych uzyskanych podczas sezonów badań na stanowisku archeologicznym El Fuerte de Samaipata (Boliwia) oraz wyniki analizy danych na platformie GIS. Oprócz warstw tematycznych do całego systemu dodano opis sektorów i zabytków archeologicznych. Zaimplementowane warstwy są powiązane z ortoobrazami utworzonymi z naziemnego skanowania laserowego (TLS), fotogrametrii bliskiego zasięgu (w świetle wizualnym, spektralnym i podczerwonym), surowych zdjęć petroglifów, bardzo szczegółowego planu wektorowego, map ryzyka, nowego podziału przestrzennego stanowiska, warstw opisowych oraz cyfrowego model terenu (DTM) opartego na wynikach TLS. Taki system przetwarzania danych z wdrożonym DTM pozwala na analizę spływu wody deszczowej i jej oddziaływania na stanowisko archeologiczne. W związku z tym w artykule przedstawiono badania niektórych warunków hydrologicznych skały Samaipata. Badania są częścią większego projektu „Badania architektoniczne i kompleksowa dokumentacja stanowiska Samaipata (Fuerte de Samaipata/Boliwia) z Listy Światowego Dziedzictwa”. Wyniki tych prac rozpatrywane są głównie z punktu widzenia zaleceń i strategii ochrony skały. Te same aspekty mogą jednak wpłynąć na przyszłe badania dotyczące chronologii i przynależności kulturowej rzeźb skalnych Samaipata.
Czasopismo
Rocznik
Tom
Strony
151--159
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences
  • Institute of Environmental Protection and Development, Wroclaw University of Environmental and Life Sciences
  • Faculty of Architecture, Wrocław University of Science and Technology
  • Faculty of Architecture, Wrocław University of Science and Technology
Bibliografia
  • [1] Geographical Information Systems in Archaeology, J. Conolly, M. Lake (eds.), Cambridge Manuals in Archaeology, Cambridge University Press, United Kingdom, 2006.
  • [2] Marwick B., Hiscock P., Sullivan M., Hughes P., Landform boundary effects on Holocene forager landscape use in arid South Australia, “Journal of Archaeological Science: Reports” 2017, Vol. 19, 864–874, doi: 10.1016/j.jasrep.2017.07.004.
  • [3] Spatial technology and archaeology: the archaeological applications of GIS, D. Wheatley, M. Gillings (eds.), Taylor & Francis, London–New York 2002, doi: 10.4324/9780203302392.
  • [4] Mehrer M., Wescott K., GIS and archaeological site location modeling, CRC Press, Boca Raton 2006, doi: 10.1201/9780203563359.
  • [5] Avilés S., Conservazione del tempio della rocca scolpita di Samaipata – Santa Cruz, Bolivia (Sudamerica), Tesi di Master: Università di Bologna – Sede di Ravenna, Facoltà di Conservazione dei Beni Culturali, Dipartimento di Storie e Metodi per la Conservazione dei Beni Culturali, 2002, www.stonewatch.de/media/download/sc%2004.pdf [accessed: 20.05.2019].
  • [6] Avilés S., Introduzione alla conservazione della Roccia Scolpita di Samaipata, Bolivia 2011, http://www.rupestreweb.info/samaipata.html [accessed: 20.05.2019].
  • [7] Avilés S., La conservación de la Roca Sagrada de Samaipata, [in:] A. Meyers, I. Combès (comp.), El Fuerte de Samaipata. Estu dios arqueológicos, Biblioteca del Museo de Historia, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra 2015, 161–170.
  • [8] Spreafico M.C., Franci F., Bitelli G. et al., Remote sensing techniques in a multidisciplinary approach for the preservation of cultural heritage sites from natural hazard: The case of Valmarecchia Rock Slabs (RN, Italy), “Engineering Geology for Society and Territory” 2015, Vol. 8, 317–321, doi: 10.1007/978-3-319-09408-3_5.
  • [9] Cigna F., Lasaponara R., Masini N., Milillo P., Tapete D., Persistent scatterer interferometry processing of COSMO­SkyMed StripMap HIMAGE time series to depict deformation of the historic centre of Rome, Italy, “Remote Sensing” 2014, Vol. 6, Iss. 12, 12593–12618, doi: 10.3390/rs61212593.
  • [10] Casana J., Kantner J., Wiewel A., Cothren J., Archaeological aerial thermography: a case study at the Chaco­era Blue J community, New Mexico, “Journal of Archaeological Science” 2014, Vol. 45, 207–219, doi: 10.1016/j.jas.2014.02.015.
  • [11] Agapiou A., Alexakis D.D., Sarris A., Hadjimitsis, D.G., Evaluating the potentials of sentinel­2 for archaeological perspective, “Remote Sensing” 2014, Vol. 6, Iss. 3, 2176–2194, doi: 10.3390/rs6032176.
  • [12] Chase F.A., Chase Z.D., Weishampel F.J. et al., Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize, “Journal of Archaeological Science” 2011, Vol. 38, Iss. 2, 387–398, doi: 10.1016/j.jas.2010.09.018.
  • [13] Sarris A., Papadopoulos N., Agapiou A. et al., Integration of geophysical surveys, ground hyperspectral measurements, aerial and satellite imagery for archaeological prospection of prehistoric sites: the case study of Vésztő-Mágor Tell, Hungary, “Journal of Archaeological Science” 2013, Vol. 40, Iss. 3, 1454–1470, doi: 10.1016/j.jas.2012.11.001.
  • [14] Aqdus S.A., Drummond J., Hanson W.S., Discovering archaeological cropmarks: A hyperspectral approach, “The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences” 2008, Vol. 37, 361–365, https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/64.pdf.
  • [15] Cavalli R.M., Colosi F., Palombo A., Pignatti S., Poscolieri M., Remote hyperspectral imagery as a support to archaeological prospection, “Journal of Cultural Heritage” 2007, Vol. 8, Iss. 3, 272–283, doi: 10.1016/j.culher.2007.03.003.
  • [16] Dell’Unto N., Leander A.M., Dellepiane M. et al., Digital reconstruction and visualization in archaeology: Case-study drawn from the work of the Swedish Pompeii Project, “IEEE Xplore” 2013, 621–628, doi: 10.1109/DigitalHeritage.2013.6743804.
  • [17] De Reu J., Plets G., Verhoeven G. et al., Towards a three-dimensional cost effective registration of the archaeological heritage, “Journal of Archaeological Science” 2013, Vol. 40, Iss. 2, 1108–1121, doi: 10.1016/j.jas.2012.08.040.
  • [18] Dell’Unto N., Landeschi G., Leander Touati A.M. et al., Experiencing Ancient Buildings from a 3D GIS Perspective: A Case Drawn from the Swedish Pompeii Project, “Journal of Archaeological Method and Theory” 2016, 23, 73–94, doi: 10.1007/s10816-014-9226-7.
  • [19] Landeschi G., Dell’Unto N., Lundqvist K. et al., 3D­GIS as a Platform for Visual Analysis: Investigating a Pompeian House, “Journal of Archaeological Science” 2016, Vol. 65, 103–113, doi: 10.1016/j.jas.2015.11.002.
  • [20] Larsson L., Trinks I., Söderberg B. et al., Interdisciplinary archaeological prospection, excavation and 3D documentation exemplified through the investigation of a burial at the Iron Age settlement site of Uppåkra in Sweden, “Archaeological Prospection” 2015, Vol. 22, Iss. 3, 143–156, doi: 10.1002/arp.1504.
  • [21] Gupta N., Devillers R., Geographic Visualization in Archaeology, “Journal of Archaeological Method and Theory” 2017, Vol. 24, 852–885, doi: 10.1007/s10816-016-9298-7.
  • [22] Woodrow K., Lindsay J.B., Berg A.A., Evaluating DEM conditioning techniques, elevation source data and grid resolution for field-scale hydrological parameter extraction, “Journal of Hydrology” 2016, Vol. 540, 1022–1029, doi: 10.1016/j.jhydrol.2016.07.018.
  • [23] Dąbrowska J., Dąbek P.B., Lejcuś I., A GIS based approach for the mitigation of surface runoff to a shallow lowland reservoir, “Eco-hydrology and Hydrobiology” 2018, Vol. 18, Iss. 4, 420–430, doi: 10.1016/j.ecohyd.2018.07.002.
  • [24] Arc Hydro: GIS for Water Resources, D.R. Maidment (eds.), Environmental Systems Research Institute, U.S., 2002.
  • [25] Brubaker K.M., Myers W.L., Drohan P.J., Miller D.A., Boyer E.W., The use of LiDAR terrain data in characterizing surface roughness and microtopography, “Applied and Environmental Soil Science” 2013, 1–13, doi: 10.1155/2013/891534.
  • [26] Thomas I.A., Jordan P., Mellander P.E. et al., Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution, “Science of The Total Environment” 2016, Vol. 556, 276–290, doi: 10.1016/j.scitotenv.2016.02.183.
  • [27] Tarboton D.G., Bras R.L., Rodriguez-Iturbe I., On the Extraction of Channel Networks from Digital Elevation Data, “Hydrological Processes” 1991, Vol. 5, Iss. 1, 81–100, doi: 10.1002/hyp.3360050107.
  • [28] Jenson S.K., Domingue, J.O., Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis, “Photogrammetric Engineering and Remote Sensing” 1988, Vol. 54, No. 11, 1593–1600.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ffc2561-87b3-45af-bd27-0b7c51840983
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.