PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Lambda-Cyhalothrin from Aqueous Solution Using Algae – Kinetic, Isotherm and Thermodynamic Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aims to determine the ability of algae in sequestering Lambda‐cyhalothrin (L-C) from aqueous solution. A series of experiments were carried out in batch mode to find equilibrium data for sorption of Lambda‐cyhalothrin (L-C), FTIR analysis was utilized to investigate the impacts of functional groups of algae in the biosorption process. Pseudo second-order kinetics model (R2 = 0.991) well describe the kinetics of adsorption of L-C onto algae sites while the adsorption mechanisms was controlled by external mass transfer as well as intraparticle diffusion. Langmuir isotherm model better fit the experimental data than Freundlich isotherm model. The higher adsorption capacity was found to be 6.954 mg/g. Thermodynamic parameters indicating that sorption of L-C onto algae was endothermic in nature. Only 40% reduction in the sequestration efficiency was noticed after five sequential regeneration cycles. The maximum sorption efficiency was found to be (95.6%) under the best conditions adsorbent dosage = 1 g/100ml, pH = 7, initial L-C concentration = 10 mg/l with a contact time of 60 minutes at 25 °C. This work demonstrated that algae are a promising adsorbent for L-C removal from aqueous solution.
Słowa kluczowe
Rocznik
Strony
282--291
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Abdulkareem, H.N., Alwared, A.I. 2019. Performance of immobilized chlorella algae for removing pb(ii) ions from aqueous solution. Iraqi Journal of Chemical and Petroleum Engineering, 20(3), 1–6. https://doi.org/10.31699/ijcpe.2019.3.1
  • 2. Al-Ghouti, M.A., Da’ana, D.A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393(November 2019), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
  • 3. Ali, D.K., Mohammed, A.A. 2023. Optimization of adsorption parameters for pesticides removal using bentonite-layered double hydroxide by response surface methodology. Desalination and Water Treatment, 284, 87–100. https://doi.org/10.5004/dwt.2023.29282
  • 4. Alobaidi, D.S., Alwared, A.I. 2023. Role of immobilised Chlorophyta algae in form of calcium alginate beads for the removal of phenol: isotherm, kinetic and thermodynamic study. Heliyon, 9(4), e14851. https://doi.org/10.1016/j.heliyon.2023.e14851
  • 5. Birungi, Z.S., Chirwa, E.M.N. 2015. Adsorption and desorption potential of cadmium using green algae: equilibrium and kinetic studies. Advanced Materials Research, 1130, 693–696. https://doi.org/10.4028/ www.scientific.net/amr.1130.693
  • 6. Deng, X., Lü, L., Li, H., Luo, F. 2010. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials, 183(1–3), 923–930. https://doi.org/10.1016/j.jhazmat.2010.07.117
  • 7. Dzizi, S., Chaib, N., Noune, F., Kaddeche, H., Charchar, N. 2022. Removal of cadmium from industrial wastewater using blue-green and green microalgae (Aphanocapsa zanardinii and Chlorella vulgaris). Desalination and Water Treatment, 273(December 2021), 139–148. https://doi.org/10.5004/dwt.2022.28858
  • 8. Elkhattabi, E.H., Lakraimi, M., Berraho, M., Legrouri, A., Hammal, R., El Gaini, L. 2018. Acid Green 1 removal from wastewater by layered double hydroxides. Applied Water Science, 8(1), 1–11. https://doi.org/10.1007/s13201-018-0658-1
  • 9. Habib, N., Guellati, O., Harat, A., Nait-Merzoug, A., El Haskouri, J., Momodu, D., Manyala, N., Begin, D., Guerioune, M. 2020. Ni–Zn hydroxide-based bi-phase multiscale porous nanohybrids: physicochemical properties. Applied Nanoscience (Switzerland), 10(8), 2467–2477. https://doi.org/10.1007/s13204-019-01062-w
  • 10. Hassan, M.A., Samaka, I.S. 2022. Water purification using an eco-friendly adsorbent. Water Practice and Technology, 17(5), 1099–1112. https://doi.org/10.2166/wpt.2022.042
  • 11. Insecticide, W.I.I., Agency, E.P., Services, C., Epa, T., Epa, T., Epa, T. 2011. Frequently Asked Questions about Lambda ‐ Cyhalothrin.
  • 12. Isam, M., Baloo, L., Chabuk, A., Majdi, A., Al-Ansari, N. 2023. Optimization and modelling of Pb (II) and Cu (II) adsorption onto red algae (Gracilaria changii)-based activated carbon by using response surface methodology. Biomass Conversion and Biorefinery, Ii. https://doi.org/10.1007/s13399-023-04150-8
  • 13. Khan, A.A., Naqvi, S.R., Ali, I., Farooq, W., Anjum, M.W., AlMohamadi, H., Lam, S.S., Verma, M., Ng, H.S., Liew, R.K. 2024. Algal biochar: A natural solution for the removal of Congo red dye from textile wastewater. Journal of the Taiwan Institute of Chemical Engineers, June, 105312. https://doi.org/10.1016/j.jtice.2023.105312
  • 14. Lin, Z., Li, J., Luan, Y., Dai, W. 2020. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 190(December 2019), 110089. https://doi.org/10.1016/j.ecoenv.2019.110089
  • 15. Mahmoud, H.K., Reda, F.M., Alagawany, M., Farag, M.R. 2021. The stress of abamectin toxicity reduced water quality, growth performance, immunity and antioxidant capacity of Oreochromis niloticus fish: Modulatory role of Simmondsia chinensis extract as a dietary supplement. Aquaculture, 534, 736247. https://doi.org/10.1016/j.aquaculture.2020.736247
  • 16. Mohammed, A.A., Al-Damluji, F.E., Al-Musawi, T.J. 2015. Equilibrium and thermodynamic studies of reactive orange dye biosorption by garden grass. Journal of Engineering, 21(4), 82–97.
  • 17. Mohammed, A.A., Ali, D.K. 2023. Bentonite-layered double hydroxide composite as potential adsorbent for removal of Abamectin pesticide from wastewater. Results in Surfaces and Interfaces, 10(December 2022), 100099. https://doi.org/10.1016/j.rsurfi.2023.100099
  • 18. Mohammed, A.A., Alnasrawi, F.A. 2024. Adsorption of Pb2+ ions by MgCuAl-layered double hydroxides@montmorillonite nanocomposite in batch and circulated fluidized bed system: Hydrodynamic and mass transfer studies. Journal of Water Process Engineering, 63(May), 105519. https://doi.org/10.1016/j.jwpe.2024.105519
  • 19. Mohammed, A.A., Kareem, S.L. 2019. Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alexandria Engineering Journal, 58(3), 917–928. https://doi.org/10.1016/j.aej.2019.08.006
  • 20. Mohammed, A.A., Kareem, S.L., Peters, R.J., Mahdi, K. 2022. Removal of amoxicillin from aqueous solution in batch and circulated fluidized bed system using zinc oxide nanoparticles: Hydrodynamic and mass transfer studies. Environmental Nanotechnology, Monitoring and Management, 17(August 2021), 100648. https://doi.org/10.1016/j.enmm.2022.100648
  • 21. Mohammed, A.A., Najim, A.A. 2020. Batch and circulated fluidized bed adsorption of nickel ions on algae: Equilibrium, thermodynamic and mass transfer studies. Desalination and Water Treatment, 200(November 2020), 131–140. https://doi.org/10.5004/dwt.2020.26106
  • 22. Mohammed, A.A., Najim, A.A., Al-Musawi, T.J., Alwared, A.I. 2019. Adsorptive performance of a mixture of three nonliving algae classes for nickel remediation in synthesized wastewater. Journal of Environmental Health Science and Engineering, 17(2), 529–538. https://doi.org/10.1007/s40201-019-00367-w
  • 23. Mokhtar, N., Aziz, E. A., Aris, A., Ishak, W.F.W., Mohd Ali, N.S. 2017. Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. Journal of Environmental Chemical Engineering, 5(6), 5721–5731. https://doi.org/10.1016/j.jece.2017.10.043
  • 24. Mousavi, S.A., Almasi, A., Navazeshkh, F., Falahi, F. 2019. Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling. Desalination and Water Treatment, 148, 229–237. https://doi.org/10.5004/dwt.2019.23788
  • 25. Mullai, P., Vishali, S., Sobiya, E. 2022. Studies on the application of algae biomass as an adsorbent in the treatment of industrial Azadirachtin insecticide wastewater. Desalination and Water Treatment, 251(March 2021), 7–17. https://doi.org/10.5004/dwt.2022.27888
  • 26. Nait-merzoug, A., Guellati, O., Djaber, S., Habib, N., Harat, A. 2021. applied sciences Ni / Zn Layered Double Hydroxide (LDH) Micro / Nanosystems and Their Azorubine Adsorption Performance.
  • 27. Najim, A.A., Mohammed, A.A. 2018. Biosorption of methylene blue from aqueous solution using mixed algae. Iraqi Journal of Chemical and Petroleum Engineering, 19(4), 1–11.
  • 28. Olal, F.O. 2016. Biosorption of selected heavy metals using green algae, spirogyra species. Journal of Natural Sciences Research, 6(14), 22–34. www.iiste.org
  • 29. Permatasari, D., Buhani, Rilyanti, M., Suharso. 2021. Adsorption kinetic and isotherm of solution pair of methylene blue and crystal violet by algae-silica-magnetite hybrid adsorbent on Porphyridium sp. Algae. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012084
  • 30. Pratiwi, D., Prasetyo, D.J., Poeloengasih, C.D. 2019. Adsorption of methylene blue dye using marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science, 251(1). https://doi.org/10.1088/1755-1315/251/1/012012
  • 31. Registration, X. (n.d.). Lambda Cyhalothrin 12.7% EC.
  • 32. Reyad, A., Abbassy, M., I.Kh. Marei, G., Rabea, E., Bedawy, M. 2022. Potential removal of some insecticides from water using microalgae and their determination by a validated UV-Vis spectrophotometric method. Alexandria Science Exchange Journal, 43(4), 431–450. https://doi.org/10.21608/asejaiqjsae.2022.254546
  • 33. Smječanin, N., Bužo, D., Mašić, E., Nuhanović, M., Sulejmanović, J., Azhar, O., Sher, F. 2022. Algae based green biocomposites for uranium removal from wastewater: Kinetic, equilibrium and thermodynamic studies. Materials Chemistry and Physics, 283(December 2021). https://doi.org/10.1016/j.matchemphys.2022.125998
  • 34. Sulaymon, A.H., Mohammed, A.A., Al-Musawi, T.J. 2013. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 20(5), 3011–3023. https://doi.org/10.1007/s11356-012-1208-2
  • 35. Utomo, H.D., Tan, K.X.D., Choong, Z.Y.D., Yu, J.J., Ong, J.J., Lim, Z.B. 2016. Biosorption of heavy metal by algae biomass in surface water. Journal of Environmental Protection, 7(11), 1547–1560. https://doi.org/10.4236/jep.2016.711128
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00b40e49-46d6-451e-9d11-54aff58c90cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.