Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 267

Liczba wyników na stronie
first rewind previous Strona / 14 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  regeneration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 14 next fast forward last
1
Content available remote Evaluation of regenerative capabilities of piezoelectric fuel injectors
EN
The article presents the issues related to the regeneration of injectors with piezoelectric actuators, taking into account existing technological constraints and the availability of original spare parts. The range of required maintenance operations among leading manufacturers of fuel systems was compared, as well as the types of diagnostic tests conducted in separate laboratory facilities. Examples of measuring devices, which should be considered as standard and optional equipment in workshops operating in this sector, were provided. Using the results of our own research, it was demonstrated that the regeneration process can be effectively carried out, even when it is necessary to expand existing procedures.
PL
W artykule przedstawiona została problematyka regeneracji wtryskiwaczy z siłownikiem piezoelektrycznym, uwzględniając istniejące ograniczenia technologiczne i dostępność do oryginalnych części zamiennych. Porównano zakres wymaganych czynności obsługowych u czołowych producentów aparatury paliwowej, jak również rodzaje testów diagnostycznych przeprowadzanych na odrębnych stanowiskach laboratoryjnych. Podano przykłady urządzeń pomiarowych, które powinny stanowić standardowe i opcjonalne wyposażenie warsztatów działających w tym sektorze usług. Na przykładzie badań własnych wykazano, że proces regeneracji może być skutecznie prowadzony, nawet przy konieczności rozszerzenia istniejących procedur.
2
Content available remote The process of regeneration of the coal mills impact wheel
EN
The process of regeneration of the coal mills impact wheel being a subassembly of a 360 MW power block was presented. Criteria that qualify the impact wheel for regeneration were discussed. Machining operations, machine tools, special devices and surfacing process were characterized. In order to ensure high quality requirements cutting parameters for selected operations were optimized.
PL
Przedstawiono proces regeneracji koła udarowego młynów węglowych będących podzespołem bloku energetycznego o mocy 360 MW. Omówiono kryteria, które kwalifikują koło udarowe do przeprowadzenia regeneracji. Scharakteryzowano operacje obróbkowe, obrabiarki i przyrządy specjalne oraz proces napawania. Aby zapewnić spełnienie wysokich wymagań jakościowych, zoptymalizowano parametry skrawania dla wybranych operacji.
EN
In this study, the removal of imidacloprid (IMD) pesticide onto activated carbon produced from nut shells of hazelnut (HAC), and walnut (WAC) has been investigated. The prepared activated carbons were characterised by total carbon, nitrogen and hydrogen content, surface areas and pore volume. Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) were studied before and after adsorption experiments. Effects of adsorbent dose (0.02-0.2 g), contact time (10-120 min), initial imidacloprid concentration (10-100 mg∙dm-3), and pH (1-8), and temperatures (25-50°C) on the removal of IMD pesticide by HAC and WAC in the batch mode were studied. The removal percentage of imidacloprid pesticide by HAC and WAC was 93.79% and 94.72%, respectively. The study showed that the pseudo-second-order kinetics model fitted well for both activated carbons. Moreover, adsorption isotherm results were evaluated using Freundlich, Langmuir and Temkin isotherm models. The adsorption results correlated well with the Langmuir isotherm model (R2 = 0.987 and 0.964) with maximum adsorption capacities of 76.923 and 83.333 mg∙g-1 for HAC and WAC, respectively, and an equilibrium time within 120 min. The nature of the adsorption of imidacloprid pesticide onto HAC and WAC is exothermic, spontaneous and physical in nature. The two prepared activated carbons (HAC, WAC) were successfully regenerated for three cycles and could be used as an effective and low-cost adsorbent for the removal of IMD pesticide from aqueous solutions. The production of the activated carbons of HAC and WAC will provide minimisation of these wastes in the environment.
EN
Today, the most convenient and widespread option for cleaning and purifying drinking water is to install reverse osmosis systems directly at the water intake points. When operating reverse osmosis systems, most owners are not concerned about the negative consequences of using such systems. After 3–6 months of using mechanical filters in the first stage of water treatment, such filters are thrown out together with other household waste. They pose a significant threat to the environment. Currently, companies in Ukraine would not collect and dispose of such filters. This direction is undeveloped. There are no corresponding data in the scientific literature. According to authors’ calculations, about 20,000 household reverse osmosis systems are operated per 1 million people today, so it is easy to calculate that 44,000 cartridges with a total polypropylene volume of 26 m3 enter the environment during the year. It is difficult to imagine the real environmental damage from the cartridges of even one city. Therefore, the regeneration of mechanical filters of reverse osmosis systems is quite relevant and essential today. This work aimed to develop an environmentally safe technology for regenerating mechanical filters with the possibility of repeated use. Filter lifespan can be prolonged by special cleaning with sulfuric acid with a fixed pH level. This article highlights the research results on the regeneration the mechanical filters, describes the characteristics of the cleaning process using sulfuric acid and shows the options for environmentally safe waste processing from such regeneration.
EN
The purpose of the study was to assess the impact of industrial wastewater on the concentration of methanol in the considered section of the Ob River basin, present proposals for the implementation of a new treatment system and analyse the implementation results. On the basis of the results of the analysis of the known methods for reducing the concentration of methanol in water, a new technological scheme for post-treatment of effluents using biological treatment with methylotrophic Methylomonas methanica Dg bacteria was proposed. The calculation of the dilution of treated wastewater using the “NDS Ecolog” program was carried out on the basis of the detailed calculation method of Karaushev, the results of which showed a decrease in the concentration of methanol in the control section to 0.0954 mg∙dm-3 (permissible concentration is 0.1 mg∙dm-3). During the period of the flood of the Glukhaya channel, it ceases to be a separate water body and, in fact, becomes part of the flood channel of the Ob River. Certain parts of the flooded areas, due to elevation changes, communicate with the channel only during a short period of time when the water level rises, i.e. 3-5 weeks during the flood period, and in fact remain isolated reservoirs for the rest of the time, potentially acting as zones of accumulation and concentration of pollutants.
EN
This study aimed to determine the adsorption capacity of rhodamine-B (Rh-B) and methylene blue (MB) on Mg/Cr-Ni adsorbents. The Mg/Cr-Ni adsorbent was synthesized by the coprecipitation method. The results of the characterization of Mg/Cr-Ni using XRD analysis showed the formation of oxides at an angle of 2θ = 31.726°, 33°, and 45.44°. The surface area of Mg/Cr-Ni is 23.139 m2/g. The adsorption capacity test for Mg/Cr-Ni for Rh-B and MB were 85.470 mg/g and 166.667 mg/g, respectively. The adsorption kinetics model followed the pseudo second order (PSO). The adsorption process is endothermic and occurs spontaneously at any temperature. Mg/CrNi showed stability in the adsorption process of Rh-B and MB for 5 regeneration cycles.
EN
The process of extracting nitrates from water by the methods of reverse osmosis and ion exchange was investigated in the paper. In the formation of reverse osmosis, low-pressure membranes were used, and in ion-exchange processes, highly alkaline anionite AB–17–8 was applied in salt form. The dynamics of changes in the concentration of nitrates in the permeate and the concentration with an increase in the degree of permeate selection from 9 to 90% at initial nitrate concentrations of 18, 50 and 100 mg/dm3 were determined. The indicators of selectivity and productivity of membranes were calculated depending on the degree of permeate selection. It was shown that the low-pressure reverse osmosis membrane is characterized by low selectivity values at high productivity values in the selected part of the nitrate concentration. It was established that the ion exchange method is significantly more effective than reverse osmosis in removing nitrates from water. It ensures the reduction of nitrate content in purified water to a value of less than 1 mg/dm3 when the degree of their extraction is reached at the level of 99%. As the ionite is saturated with nitrates, the efficiency of their extraction decreases. Anionite sorbs nitrates effectively enough, being both in the chloride mixture and in the sulfate form. Nitrates are effectively desorbed by 2H solutions of sodium chloride and sodium or ammonium sulfate.
EN
Bioadsorbent preparation from rambutan peel applied as adsorbent was characterized using FT-IR, SEM-EDS, BET and TG-DTA analysis. FTIR analysis showed the presence of specific cellulose compounds in the rambutan peel bioadsorbent, the rambutan peel bioadsorbent was amorphous, there were wavy and uneven pores in the morphology of the rambutan peel and had the highest elemental content of 74.3%, the surface area of the rambutan peel was 1.22 cm/g. The adsorption process was applied to malachite green, congo red, and procion red dyes with parameters such as pH, kinetics, isotherm and thermodynamics. Based on kinetic parameters, the adsorption process of malachite green, congo red, and procion red using rambutan peel tends to follow the pseudo second order kinetic model. The adsorption capacity achieved was 182.40 mg/g in procion red, 6.24 mg/g in congo red, and 11.73 mg/g in malachite green. The adsorption process takes place spontaneously which is indicated by a negative Gibs free energy value.
EN
MgAl-LDH was directly impregnated with biochar to fabricate MgAl-Biochar (MgAl/BC) and applied to remove methyl orange (MO) and methyl red (MR). The XRD, BET, FTIR, TG-DTA and SEM analyses were conducted to characterize the prepared material. The result of XRD characterization diffraction peaks at 11.47, 22.86, 34.69, and 61.6 shows that the precursor was successfully transformed to MgAl-BC. The FT-IR analysis at vibration 1010, 1381,3447 and 1635 cm-1 illustrated that the composite was well formed. The BET analysis showed that the Surface area of the MgAl-BC composite was 111.404 m2/g which was larger than that of the precursor, equal to 23.15 m2/g. The kinetic model of the adsorption study both MR and MO were fitted to PSO and followed the Langmuir model with adsorption capacities for MR 142.857 mg/g and MO 128.205 mg/g. The regeneration study of composite indicated higher efficiency than the pristine and show good stability of adsorption process in five cycles.
EN
Layered double hydroxide (LDH) can be used as an adsorbent to remove pollutants from aqueous solutions, but it drawbacks where the structure is easily damaged so that it cannot be reused in the adsorption process and has a low adsorption capacity. This can be overcome through the development of layered double hydroxide material composited with chitosan support material. In addition to untilizing waste, chitosan is selected as supporting material in the layered double hydroxide modification process, because it is cheap, has high selectivity, and is biodegradable. In this study, the adsorbent was applied in the process of removing Congo Red (CR). The LDH modification process using chitosan was successfully carried out, as seen from XRD analysis which resembled the base material (Mg-Al) and support (CT), the BET analysis which showed an increase in surface area, as well as from the large adsorption capacity value and the regeneration process which tends to be stable after compositing is done.
EN
The galvanic industry and the production of printed circuit boards are a significant source of environmental pollution, they pose a threat comparable to the chemical industry. They pollute both the atmosphere, the biosphere and the hydrosphere. The paper presents an assessment of the negative impact on the environment, galvanic production and the resulting post-production waste. It was proposed to use the technology of regeneration of used treating solutions, in which the recovered metal can be reused as a secondary raw material for the production of copper products. The regenerated solution, on the other hand, can be used to treat integrated circuit boards. As part of the work, with the use of a microscope, the structural characteristics of the metal surface obtained as a result of the applied regeneration process were carried out. The indicator of the total exposure to substances present in the deposit formed during production was determined, both before (0.045) and after the introduction of the new technology (100). The economic analysis of the planned project based on the new technology showed that the implementation of the presented method of wastewater treatment allows for obtaining significant benefits, both financial and environmental. The analyses performed can be a valuable source of information on how to reduce the impact environment during the production of integrated circuit boards, as well as on the possibilities of obtaining less expensive materials in the form of secondary raw materials.
EN
Catalytic reforming is an important intermediate in the processing of crude (naphtha in particular) to obtain gasoline. The catalyst used in the process (platinum) is quite expensive and may negatively impact the business if not used judiciously. The aforesaid not only refers to the reduction in loss of the catalyst per unit of gasoline produced but also to the manufacturing of an environmentally friendlier product alongside which is the need of the planet and also a necessity to meet the increasingly strict government norms. In order to meet the above requirements, various refineries around the world use various well-known conventional methods which depend on the quality and quantity of crude manufactured by them. This paper focuses on highlighting recent advancements in methods of catalytic regeneration (CR) in the reforming unit of petroleum industries to produce high octane gasoline, without any major replacements in their existing setup. Research papers formulated by the application of methodologies involving non-linear models and real-time refinery data have only been considered to avoid any deviations/errors in practical applications. In-depth analysis of these papers has led to the origin of some ideas which have been included as suggestions and can be considered as subjects of further research. In all, the objective of the paper is to serve as a reference for researchers and engineers working on devising optimum methods to improve the regeneration of reforming catalysts.
EN
Tests were performed on example tools applied in hot die forging processes. After withdrawal from service due to excessive wear, these tools can be regenerated for re-use through machining and hardfacing. First, analysis of worn tools was carried out for the purpose of identifying tool working conditions and wear mechanisms occurring in the surface layer of tools during forging. Testing of worn tools included observations under a microscope, surface scanning and microhardness measurement in the surface layer. The results indicate very diverse work conditions, which suggest the application of different materials and hardfacing tool regeneration technology in individual die forging processes.
EN
The method of the ongoing assessment of the reclaim quality originating from the mechanical reclamation is described in this paper. In the process, the triboelectric system of measuring amounts of dust in the dedusting part of a reclamation device was applied. Based on the online measurements of the amounts of dust generated in the spent sand-reclamation process and the post-process determinations of the ignition losses and granular structures of the removed dust, the proper work parameters of the experimental reclaimer were selected. The allowable value of the ignition losses as well as the main fraction of the reclaimed matrix being similar to fresh sand was assumed as the main criteria of the positive assessment of the process. Within the presented investigations, a periodically operating device for rotor-mechanical reclamation was developed. The possibility of changing the intensity and time of the reclamation treatment as well as the triboelectric system of the dust-amount measuring were applied in this device. Tests were performed for the spent moulding sand with phenol-resol resin Carbophen 5692 hardened by CO2. This sand represents the moulding sand group with a less harmful influence on the surroundings for which the recovery of the quartz matrix utilising the reclamation requires stricter control of the parameters of the reclamation process and reclaim quality.
EN
During the process of regeneration of machine parts, certain phenomena occur that have a significant impact on the loss of their working ability. Hereditary properties are expressed by the interdependence of geometric and physical-mechanical-metallurgical parameters of gear teeth created during the technological operations of regeneration of worn teeth by hard-facing. The influence of the type of additional material (electrodes and their combinations) on the tribological characteristics of welded gear teeth was considered, whereby the so-called hard additional materials were applied. Those are the additional materials that give the required surface hardness of the teeth without subsequent thermal or thermochemical treatment. This research did not involve the regeneration of specific worn gears removed from machine systems, but the new gears were made, which were then damaged and then regenerated by hard-facing using the shielded metal arc welding (SMAW) procedure. Thus, all the tested gears were made of the same material, belonged to one batch and were machined on the same machines with the same machining regimes. The tests were performed on samples made of 20MnCr5 steel for cementation, on a tribometer by the “block on disc” method, which was designed to simulate the operating conditions of coupled teeth of concrete gears in the exploitation conditions. Based on the conducted tribological tests, the average coefficients of friction and topography of the surfaces were determined by measuring the wear trace and it was defined which additional materials give the best tribological characteristics of the surfaces of gears regenerated by hard-facing.
PL
Diatomit to ziemia okrzemkowa, naturalny minerał pochodzenia organicznego. Skały okrzemkowe należą do skał osadowych, powstałych w okresie trzeciorzędu i czwartorzędu z pancerzyków jednokomórkowych okrzemek, które osiadły na dnie mórz i jezior. Podstawowym składnikiem diatomitu jest krzemionka SiO2 o różnym stopniu uwodnienia, której towarzyszą niewielkie ilości innych substancji mineralnych. Materiał ten posiada ujemny ładunek elektryczny, stąd zdolność diatomitu do przyciągania różnorodnych cząsteczek, do których należą liczne zanieczyszczenia. Artykuł omawia unikatowe właściwości diatomitu, które mogą być wykorzystane w wielu dziedzinach biogospodarki.
EN
Diatomite is diatomaceous earth, a natural mineral of organic origin. Diatomaceous rocks were formed in the Tertiary and Quaternary periods from the shells of single celled diatoms that settled on the bottom of seas and lakes. The basic component of diatomite is silica SiO2 of various degrees of hydration, with small amounts of other minerals. This mineral material has a negative electric charge, therefore diatomite shows ability to attract various particles, including numerous impurities. The paper discusses the unique properties of diatomite that can be used in many areas of the bioeconomy.
EN
Development of Zn/Al layered double hydroxide by intercalation using polyoxometalate (POM) K4 [α-SiW12O40] to Zn/Al-POM was investigated. The success of the modification is evidenced by the XRD, FT-IR, and BET characterization data. XRD characterization showed an increase in the interlayer distance from 8.59 Å in Zn/Al LDHs to 10.26 Å in Zn/Al-POM. This success is also supported by the FT-IR data with the appearance of vibrations around 779–979 cm-1 which indicates the vibration of the polyoxometalate compound in Zn/Al-POM. Other supporting data in the form of BET also prove an increase in surface area from 1.968 m2/g in Zn/Al LDHs to 14.042 m2/g Zn/Al-POM. The ability of Zn/Al-POM as an adsorbent is proven through several parameters such as kinetics, isotherm, thermodynamics, and regeneration for Cd2+, Pb2+, Ni2+, and Co2+. Adsorption kinetics showed that Zn/Al-POM was more likely to follow the pseudo-second-order adsorption kinetics model for Cd2+, Pb2+, Ni2+, and Co2+. The results of determining the adsorption isotherm parameters of Zn/Al-POM tend to follow the Freundlich isotherm model with a maximum adsorption capacity of 74.13 mg/g on Pb2+. The regeneration process showed that Zn/Al-POM was more resistant than Zn/Al LDHs up to 3 cycles. It was proven that Zn/Al-POM was able to survive in the last cycle up to 69.19% on Ni2+.
first rewind previous Strona / 14 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.