Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 105

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  algae
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
EN
The objective of this study was to create a new material utilizing a biopolymer (sodium alginate) and the powder of brown algae for the elimination of organic pollutants like dyes by adsorption from a water-based solution. The alginate/algae composite beads used in this study as an adsorbent were created by inotropic gelation of sodium alginate utilizing calcium ions as a cross-linking agent. The beads thus synthetized had been characterized by using different techniques in order to assess their characteristics. The adsorption procedure was studied in a batch mode at room temperature using methyl violet, a cationic dye chosen as an organic pollutant. The influence of beading parameters like contact time, methyl violet concentration, pH, sorbent amount and agitation speed was studied. It was found that the adsorption capacities were notably influenced by the initial dye concentration, pH and bead dose. Indeed, the results found indicated that the equilibrium sorption of methyl violet by this adsorbent was reached in around 3 hours for the different concentrations studied (10 mg/L, 40 mg/L and 70 mg/L) with percentage dye removal of around 80% at the optimum bead amount of 2 g. The kinetic modeling had shown that the model of the pseudo-second-order kinetic governed the adsorption rate of methyl violet on alginate/brown algae composite beads.
EN
The potential of seventeen marine seaweed extracts (five Chlorophyceae, six Pheophyceae, six Rhodophyceae) was investigated to determine their antibacterial activity, aiming to evaluate their viability in pharmaceutical applications. The assessment of their bioactivity involved utilizing crude extracts from dried samples against five Gram-positive bacteria, one Gram-negative bacteria, yeast, and fungus using the disk diffusion technique. These samples were collected from Oualidia, situated along Morocco’s Atlantic coast. Out of the diverse macroalgae studied, 36% of the extracts exhibited activity against at least one of the tested microorganisms. This outcome strongly supported the notion of leveraging algae extracts as a promising source of antibacterial compounds. In particular, extracts from Cystoseira humilis, Bifurcaria bifurcata and Asparagopsis armata showed zones of inhibition greater than 17 mm. Purification of the compounds responsible for the inhibitory activity against several types of C. humilis microorganisms was performed using chromatography and thin layer chromatography.
EN
There are approximately 15 million users of system heat in Poland, but unfortunately nearly 70% of the fuel used in heat production is fossil fuel. Therefore, the CO2 emission reduction in the heat production industry is becoming one of the key challenges. City Heat Distribution Enterprise Ltd. in Nowy Sącz (Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o.) has been conducting a self-financed research and development project entitled The use of algae as carbon dioxide absorbers at MPEC Nowy Sącz. The project deals with postcombustion CO2 capture using Chlorella vulgaris algae. As a result of tests conducted in a 1000 l hermetic container under optimal temperature and light conditions, the recovery of biomass can be performed in weekly cycles, yielding approximately 25 kilograms of biomass per year. Assuming that half of the dry mass of the algae is carbon, it can be said that 240 grams of carbon is bound in one cycle, which, converted to CO2 , gives 880 grams of this gas. Our results showed that around 45.8 kilograms of CO2 per year was absorbed. Additionally, it is possible to use waste materials and by-products of technological processes as a nutrient medium for algae.
PL
W Polsce z ciepła systemowego korzysta ok. 15 mln osób, lecz niestety blisko 70 proc. paliw zużywanych do produkcji ciepła to paliwa węglowe. Zatem redukcja emisji CO2 w ciepłownictwie staje się jednym z kluczowych wyzwań. Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o. w Nowym Sączu realizuje projekt badawczo-rozwojowy finansowany ze środków własnych pn. Zastosowanie alg jako absorbera dwutlenku węgla w MPEC Nowy Sącz. Projekt związany jest z wychwytywaniem CO2 po spalaniu z wykorzystaniem alg Chlorella vulgaris. W wyniku przeprowadzonych badań w szczelnym zbiorniku o pojemności 1000 l w optymalnych warunkach temperatury i oświetlenia odzysk biomasy można prowadzić w cyklach cotygodniowych, uzyskując ok. 25 kg biomasy rocznie. Przyjmując, że połowa suchej masy alg to węgiel, można przyjąć, że w jednym cyklu związane zostaje 240 g węgla, co w przełożeniu na CO2 daje 880 g tego gazu. W skali roku można zatem zaabsorbować ok. 45,8 kg CO2. Dodatkowo jako pożywkę dla alg można stosować materiały odpadowe i produkty uboczne z procesów technologicznych.
PL
Prawidłowe żywienie człowieka uzależnione jest od spożycia wielu składników odżywczych obecnych w diecie. Białko stanowi nieodłączną część tej diety. Może ono pochodzić z wielu źródeł i różnić się pod względem biodostępności czy profilu aminokwasowego. Najczęściej źródłem pełnowartościowego białka jest żywność pochodzenia zwierzęcego. Współcześnie hodowla zwierząt generuje jednak wysokie koszty i jest szkodliwa dla środowiska. W obliczu stale rosnącej populacji światowej aktualnym wyzwaniem jest poszukiwanie białka ze źródeł spełniających aspekty żywieniowe, środowiskowe i społeczne. Najlepszymi alternatywami wydają się być białka jednokomórkowców, organizmów morskich oraz owadów jadalnych. Białka te charakteryzują się wysoką wartością odżywczą i wysoką strawnością. Obecnie głównymi problemami, które ograniczają wykorzystanie tych białek w żywności są wysokie koszty produkcji, bezpieczeństwo oraz brak akceptacji tego typu żywności ze strony konsumentów.
EN
Proper human nutrition depends on the intake of many nutrients present in the diet. Protein is an integral part of this diet. It can come from many sources and differ in terms of digestibility and amino acid profile. The most common source of protein is food of animal origin. Nowadays, livestock farming generates high costs and is harmful to the environment. In the face of a constantly growing world population, the current challenge is to search for protein from sources that meet nutritional, environmental and social aspects. The best alternatives seem to be proteins from unicellular organisms, marine organisms and edible insects. They are characterized by high nutritional value and high digestibility. Currently, the main problems that limit the use of these proteins in food are high production costs, safety and lack of acceptance of this type of food by consumers.
EN
Although vanadium-based nanomaterials have found extensive use in industry, their influence on ecosystems and living organisms is not yet well investigated. In this study, hydrothermal methods were utilized for the synthesis of vanadium pentoxide nanoparticles (V2O5 NPs). The gained NPs were characterized using XRD, FT-IR, EDS, DLS, SEM and TEM techniques. Subsequently, the toxic effects of V2O5 NPs on the model green microalgae Chlorella vulgaris were evaluated. According to the obtained results, V2O5 NPs caused a significant reduction in cell number and biomass production of algae in a dose and time dependent manner. Moreover, flow cytometric analysis confirmed a reduction in the quantity of living cells. Scanning electron microscopy showed plasmolysis and deformation of the cells after exposure to nanoparticles. The photosynthetic pigments and phenolics content exhibited a decrease in comparison with the control sample. Although, non-enzymatic antioxidant system in C. vulgaris displayed an average action, antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a dose dependent increasing trend. These intercellular reactions designated the activation of the antioxidant defense system in response to the induced oxidative stress by V2O5 NPs.
EN
Cryptophytes, to which the Pyrenomonadaceae family belongs, are interesting organisms that occur almost allover the world and they are an important element of trophic chains in many ecosystems. The development of research methods and techniques, including electron microscopy and molecular studies, allowed for a better understanding of taxonomic relationships in this group of organisms. The Pyrenomonadaceae family currently includes three genera: Rhodomonas, Rhinomonas, and Storeatula, but their validityis being debated in the light of the latest data. The state of knowledge and the problems faced in the taxonomic revision of this family of cryptophytes are summarized in this article.
EN
This research analysed the availability of phytoplankton and the growth rate of Vannamei shrimp in relation to water quality changes. The research was carried out in February-March 2021 for a half cycle of shrimp cultivation in two ponds of the Brackish Water Fish Culture Probolinggo Laboratory in Probolinggo, East Java, Indonesia. The research used a descriptive method and included a survey. Sampling was made every two weeks for two months. Nine parameters were measured and ten shrimps were taken for a specific growth rate (SGR) measurement once per sampling. Data were analysed using the principal component analysis (PCA) and canonical correspondence analysis (CCA). Secondary data of water quality were added for the PCA. The results show that the phytoplankton found in the first pond consisted of Chlorophyta, Chrysophyta, and Cyanophyta, whereas the phytoplankton in the other pond included Chlorophyta, Chrysophyta, Cyanophyta, and Dinophyta. The abundance of phytoplankton ranged from 12-80∙103 cell∙cm-3, which indicated eutrophic waters. The PCA demonstrated that pH, nitrate, and total organic matter (TOM) significantly influenced phytoplankton abundance in the pond. In addition, water quality parameters, such as temperature, transparency, salinity, nitrite and phosphate levels, were tolerable in both ponds for the growth of shrimps. However, the level of pH was lower than the aquaculture quality standard, whereas those of nitrate, ammonia, and TOM were higher. The growth rate of Vannamei shrimp increased by 0.76–7.34%∙day-1.
EN
One of the important ways to prevent permanent environmental pollution is to constantly monitor its quality, which can be performed in several ways. The present bioindication study analyzed the level of diversity and abundance of biofilm microorganism communities, which illustrate the state of the studied aquatic environment, enabling to determine its quality. The impact of stormwater discharge on the receiver at particular points was evaluated on the basis of the reaction of selected microorganisms or their groups to the substances appearing in the watercourse. The study of indicator organisms gives information about the waters of a given body of water without expensive hydrochemical tests and without causing a burden on the environment during the production as well as disposal of reagents that are consumed in many classical physicochemical analyses. On the basis of selected algal species, the Shannon index and McArthur index were calculated, and the effect of storm sewer discharge on the communities of indicator organisms was determined. The best visible impact of storm sewer discharge was seen on the basis of the entire study cycle in relation to the median of the McArthur index.
PL
Zmiany estetyczne na elewacjach budynków są najczęściej spowodowane rozwojem grzybów i glonów. Mikroorganizmy te wywołują zjawisko biodeterioracji, czyli biologicznego niszczenia materiałów. W przypadku tynków zewnętrznych zabezpieczonych biocydami, które ograniczają wzrost mikroorganizmów, ważne jest określenie czasu oporności materiałów budowlanych na porastanie przez glony i grzyby. Dotychczas nie opracowano wystandaryzowanych metod badania trwałości zabezpieczenia przeciwgrzybowego i przeciwglonowego tynków na elewacjach zewnętrznych. Ważne jest, aby takie metody uwzględniały aspekty środowiskowe związane ze zmianą właściwości biocydów w trakcie użytkowania materiałów budowlanych w warunkach rzeczywistych. W artykule przedstawiono nową metodę oceny czasu trwałości zabezpieczenia przeciwgrzybowego i przeciwglonowego tynków budowlanych, która uwzględnia aspekty oświetlenia, wypłukiwania biocydów wodą, obecności materii organicznej na powłokach oraz gęstości komórek i rodzaju mikroorganizmów osiadających na elewacjach. Przedstawiono także perspektywy rozwoju metody w oparciu o zastosowanie cyfrowych metod analizy obrazu do oceny wizualnej stopnia porośnięcia próbek przez mikroorganizmy.
EN
Aesthetic changes on building facades are most commonly caused by the development of fungi and algae. These microorganisms induce the phenomenon of biodeterioration, which is the biological degradation of materials. In the case of external plasters protected with biocides, which limit the growth of microorganisms, it is important to determine the resistance time of building materials to colonization by algae and fungi. So far, standardized methods for testing the durability of antifungal and algicidal protection of plasters on external facades have not been developed. It is important that such methods take into account environmental aspects related to the change in the properties of biocides during the use of building materials in real conditions. The article presents a new method for assessing the durability of antifungal and algicidal protection of building plasters, which considers aspects such as lighting, leaching of biocides with water, the presence of organic matter on coatings, as well as the density of cells and the type of microorganisms settling on facades. The article also presents the prospects for the development of the method based on the application of digital image analysis methods to visually assess the degree of colonization of samples by microorganisms.
10
Content available remote Evaluation of the middle course of the Oder River contamination
EN
Studies of water quality changes in the Oder River in its middle course near the city of Wroclaw, mainly concerning the content of organic substances, were conducted between the years 2017-2022. Over the period of five years, no significant worsening of the Oder River water quality has been observed with respect to the total organic carbon content, however, an increase in the concentrations of specific organic contaminants from the PFAS group was observed. An intense seasonal algae growth was found in spring and late summer, and the number of algae has increased with time. Diatoms are the most abundant algae type. Water from the Oder River contains large amounts of biogens (nitrates and phosphates), which promote microorganism growth in water.
PL
Badania zmian jakości wody Odry prowadzone były w środkowym jej biegu koło Wrocławia w latach 2017-2022. W okresie badań nie stwierdzono istotnych zmian zawartości substancji organicznych zarówno w zakresie ogólnego węgla organicznego, jak też analizowanych mikrozanieczyszczeń. W Odrze stwierdzono zakwit glonów w okresie wiosennym i późnego lata, a liczebność mikroorganizmów rosła w kolejnych latach, wśród których dominowały Okrzemki. Stwierdzona duża zawartość substancji biogennych w wodzie mogła przyczyniać się do rozwoju mikroorganizmów, w tym glonów.
EN
The aim of the research was to evaluate the effectiveness of the removal of Cu and Pb ions by algae. The experiments were carried out in the presence of two algal populations: a pure culture of Raphidocelis subcapitata, and a mixed chlorophyta population. The research involved a model study, experiments in the presence of wastewater from the manufacture of batteries, and the study of process kinetics. The wastewater pH was 4.0, and the initial concentrations of metal ions in the wastewater were 95.4 mg/L for Pb and 48.3 mg/L for Cu, respectively. The maximum sorption capacity of the pure Raphidocelis subcapitata culture was 14.8 mg/g d.m. for Pb, corresponding to the removal of 72% of lead, and 6.1 mg/g d.m. for Cu, corresponding to the removal of 43% of copper from the wastewater. The best ion sorption efficiency in the case of the mixed chlorophyta population was 7.0 mg/g d.m. for Pb, i.e., 61% removal of lead, and 12.8 mg/g d.m. for Cu, i.e., 69% removal of copper ions from the wastewater. The optimum duration of the process was found to be 1 hour, since the majority of biomass samples reached the maximum saturation after that time. On the basis of the obtained results (Lagergren models), it was found that the dominant mechanism of the process was chemisorption.
EN
The current study aimed to use the biological treatment (Phycoremediation) for sewage water, where the green alga Chlorella vulgaris was used in the treatment process and to improve water quality by removing some of the pollutants contained in the water, the most important of which are hydrocarbon pollutants, and to note the changes in the biochemical properties of the algae, such as the SOD enzyme and CAT enzyme and total chlorophyll before and after the treatment process. The treatment process took place between wastewater and green algae when the latter reached a stable stage to ensure its high treatment capacity and the best possible life span. Where the measurements were made for the characteristics of the treated water in addition to the biochemical measurements of the algae on the 4th and 8th day of the biological treatment. A study of the growth curve of C. vulgaris showed that the growth phase started on day 6, reached stability on day 12, then reached the death phase on day 19, and continued to decline until the death of the alga. The results of the study showed the value of what was contained in the wastewater before the treatment process, as it was as follows: total hydrocarbons (5.38 mg/l), as for the biochemical properties of algae before exposure to wastewater, they were as follows: superoxide dismutase enzyme (1.2197 U/mg), catalase enzyme (0.6023 U/mg), total chlorophyll (6.1503 mg/g). After the wastewater treatment process was completed, the high ability of green algae to remove hydrocarbon pollutants from the water was shown, at a rate of 72.3–64.5%, respectively. The results of the study showed the effect of sewage water on some physiological characteristics of algae, as it showed an increase in the activity of SOD after 4 days of treatment to reach 1.33 U/mg, while the activity decreased on the 8th day to reach 1.289 U/mg, as for the CAT enzyme It appeared in the same way as the previous enzyme, as its effectiveness increased after 4 days of treatment to reach 0.6916 U/mg, and decreased on the last day to reach 0.5476 U/mg, while with regard to the value of chlorophyll, the value of chlorophyll a decreased to reach 1.9473 mg/g in the last day, while on the contrary, the value of chlorophyll b increased to reach 4.5369 mg/g in the last day, while for total chlorophyll its value increased to reach 6.4842 mg/g in the last day.
EN
The synthetic dye industry is a significant source of anthropogenic pollutants emitted into many water bodies across the world. Bioremoval is a substitute for industrial techniques for detoxifying dye-contaminated water. Green algae is an abundant microorganism processing to produce cost-effective, eco-friendly, and high-quality method to bioremediation by immobilization technique. In this present study, The effectiveness of the immobilized green alga Chlorella vulgaris to eliminate Congo red dye in both water and wastewater was assessed through the biodegradation Process under various conditions, including pH, concentration of dye, contact time, and NaCl. The results revealed that the removal increased with increasing contact duration, with the maximum bioremoval percentage occurring at 89.6% at a contact time of 13 days. The removal effectiveness of dye as the number of beads of immobilized C.vulgaris algae grew; the highest removal efficiency was achieved at 7–8 beads of immobilized C.vulgaris algae. There was also an inverse relationship between bioremoval and dye concentration; the maximum removal percentage was 90.1% at 0.1 M dye concentration. The highest removal efficiency was found in the range (91.3–86) at pH 6–7. The bioremoval of Congo red dye was similar in fresh and salinity water (87.2% and 85.3%, respectively). This study observed high removal efficiency for immobilized algae to Congo red under different concentrations of NaCl as an indicator of salinity, ranging between 85.3 and 87.2%.
EN
Microalgae are considered as a renewable natural resource that presents important potentialities to be valorized in several fields. This valorization must necessarily start with a thorough study of the biochemical composition of each species of algae. The objective of this study is to study the evolution of the biochemical composition according to the different stages of growth of three biomasses of microalgae (Fragilaria sp, Scenedesmus protuberans, Polytoma Papilatum) collected from Moroccan aquatic environments. Polytoma Papilatum and Scenedesmus protuberans show high protein content of 89.23±2.58%, 90.4±1.45% respectively in addition to low lipid 2.4±0.23, 1.63±0.2% and carbohydrate 8.08±1.25, 8.19±1.07 respectively. On the other hand, Fragilaria sp has high value of carbohydrate 65.73±3.25% as well as low in protein and lipid contents with values of 33.16±1.76, 1.28±0.29 respectively. The monitoring of the growth kinetics allows differentiating three phases on the growth curve: latent phase, exponential growth phase, and stationary phase. Regarding the biochemical composition, the highest content of proteins, carbohydrates and lipids in relation to the harvested biomass reach its maximum at the stationary phase.
EN
Algae have been present in the water treatments technologies, food for animals makingprocesses or even for diet supplements production for many years now. Recent years, however, have brought a number of ideas and discoveries for a wider use of these autotrophs. Their use is related to the broadly understood environmental protection and many threads of combating climate change. Currently, one of the most common ways of using algae is the production of liquid biofuels of the 3rd and 4th generation and unconventional biomass generation. Biofuels obtained from algae, in addition to lower amounts of harmful substances contained in them, are often characterized by a negative emission balance. It is related to the fact that those organisms, being in an exponential growth phase, assimilate the carbon dioxideneeded for photosynthesis. The production of energy substances from algae and microalgae in the teeth of draining fossil fuel deposits and their destructive impact on the environment. That sooth combined with the ease and low cost of culture, condition they become a real alternative to existing energy sources. Unique properties of algae linked with the fact that they are among the best, known biological energy converters opens the way to a number of opportunities to use them in other economic sectors. Certainly, the technological revolution in the energy market in addition to the requirement to create the most efficient reactors, in-depth research on the properties of fuels and the producers themselves still needs to be regulated by law. Algae can be grown in polluted waters, and the energy raw materials produced from them are able to reach (without emission logistic costs) a negative balance of CO2 emissions. This phenomenon and the fact that apart from fuels and biogas, they can be used for purposes such as carbon sequestration, creating energy biomass, medicines and dietary supplements, as well as food for animals, for example, the most reasonable choice would be to create advanced regulations regarding the closed- circuit policy in the energy sector, based precisely on biologically active organisms. This work focuses on gathering and presenting basic information regarding current technologies related to algae, their potential uses in the energy sector, and the long-term prospects for their development. It also takes into account the issues associated with the holistic nature of energy harvesting methods such as the one discussed.
EN
The work presents a new chemometric-assisted approach to distinguish commercially available food products based on their chemical composition. The analysed material consisted of 15 seaweeds (red Rhodophyta and brown Phaeophyta macroalgae) of various origin. The concentrations of the main nutrients (K, Na, Ca, and Mg) and essential trace elements (Fe, Mn, and Zn) were determined using flame atomic emission spectroscopy and atomic absorption spectrometry. The highest concentrations of nutrients were found in the products of brown algae (for example: the highest concentration of Ca was determined in the Kombu algae product - 13.92 mg/g dr.wt.; Mg - in Wakame - 9.85 mg / g dr.wt.) compared to the products of red algae (the lowest concentrations of Ca and Mg were found in Dulce algae - 1.87 mg / g dr.wt. and 2.83 mg / g dr.wt., respectively). Chemometric tools, i.e. principal components analysis and cluster analysis combined with heat maps allowed to distinguish samples clearly by species, red algae (Nori, Dulse, Irish moss) from brown ones (Wakame, Kombu). However, neither the place of harvest (country of origin) nor the food processing has allowed the separation of the food samples into individual groups. It was proven that the nutritional properties of food derived from naturally grown sea algae depend on the characteristic of the species, rather than on the place of harvest. Furthermore, the method of food processing changes its mineral composition to a very limited degree.
EN
The study presents the possibility of using chlorophyta in the removal of cadmium and lead ions from industrial wastewater produced after the washing of equipment used in the manufacture of battery and batteries. The process was conducted with the use of two algal cultures: Raphidocelis subcapitata produced in laboratory conditions, and a mixed chlorophyta population collected from a natural, eutrophicated water reservoir with heavy metal ions present in the water and sludge. The study showed that the effectiveness of a pure algal culture is comparable to that of a mixed chlorophyta population, characterized by greater diversity of functional groups at binding sites and higher resistance to stress that may occur in the wastewater environment. The maximum effectiveness of ions sorption was 64% for cadmium (mixed algal population) and 60% for lead (Raphidocelis subcapitata).
EN
In this present study, biodiesel was synthesized as per ASTM method by using algae as a raw material, which in the environment is considered as being a harmful waste and of a nature that blooms in ponds, lakes and reservoirs. In order to improve fuel quality, the transesterification process was carried out in this study so as to remove fatty acids and thereafter, analyze several fuel parameters of the biodiesel were determined. The calorific value of the biodiesel and its specific gravity was 42660 kJ/kg and 0.803 g/cm3 respectively. The viscosity of the sample was found to be 1.99. The cetane number of diesel fuel ranged from 40 to 55 and for the biodiesel it was found to be 47. The flashpoint and firepoint of the sample was recorded as 80°C and 94°C respectively. The conclusion is that it is worthy to mention that this process does not require high-end technology; hence, it could be used in the energy generation process in remote areas and as an alternative resource, as well.
19
Content available remote Czynniki mikrobiologiczne a profilaktyka i rewaloryzacja budynków mieszkalnych
PL
Podatność obiektów budowlanych na czynniki mikrobiologiczne jest duża i dotyczy wszystkich konstrukcji, zarówno pracujących w warunkach podwyższonej wilgotności, jak i w temperaturze optymalnej dla egzystencji człowieka. Nadmierny rozwój tych czynników związany jest z błędami projektowania, wznoszenia i eksploatacji budynków. Analiza koincydencji trwałości obiektów i zdrowia mieszkańców z fizjologią i morfologią czynników pozwala na prowadzenie określonej profilaktyki i rewaloryzacji mikrobiologicznej w budynkach.
EN
Suppleness of building objects on microbiological agents is big and concerns all of constructions, which work in the high moisture and in the optimum temperature for the man. Excessive development of microbiological agents is connected the first of all with bad projecting, realization or exploitation of buildings. The analysis of the coincidence of the durability of objects and the health of tenants with physiology and morphology these agents permits on the conducting the prophylaxis and microbiological revalorization in buildings.
EN
Most of the algae are eukaryotic organisms commonly found in the aquatic environment. They are characterized by a great variety of species and the possibility of growing under various conditions. They photosynthesize, mainly needing light, water and carbon dioxide to grow. Algae can be used in various branches of the economy for the production of food, animal feed, bio-fertilizers, pigments, they can be used for sewage treatment or carbon dioxide sequestration. The aim of the work was to investigate the effect of the material from which the walls of containers are made on the bioreactors for algae cultivation. Two wall materials were used in the research: shiny aluminium foil and matte black light-absorbing paper. The content of photosynthetic pigments in algae cells, optical density, temperature and pH were examined. The tests were performed in triplicate and the standard error was calculated with the 95% confidence interval. It was observed that the glossy aluminium foil wall significantly improved the growth of the Chlorella vulgaris algae at the lowest light intensities by more than 4 times chlorophyll a compared to the sample placed in a container with walls of matte black paper. This means that the use of walls in shiny aluminium foil containers can reduce the lighting costs and contribute to an increase in the produced biomass.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.