Image segmentation is an essential process in many fields involving digital images. In gen-eral, segmentation is the process of dividing the image into objects and background image.Image segmentation is an important step in the object detection process. It becomes morecritical if a given image is corrupted by noise. Most digital images are corrupted by noisessuch as salt and pepper noise, Gaussian noise, Poisson noise, speckle noise, etc. Specklenoise is a multiplicative noise that affects pixels in a gray-scale image, and mainly occursin low level luminance images such as Synthetic Aperture Radar (SAR) images and Mag-netic Resonance Image (MRI) images. Image enhancement is an essential task to reducespecklenoise prior to performing further image processing such as object detection, imagesegmentation, edge detection, etc. Here, we propose a neighborhood-based algorithm toreduce speckle noise in gray-scale images. The main aim of the noise reduction technique isto segment the noisy image. So that the proposed algorithm applies some luminance to theoriginal image. The proposed technique performs well at maximum noise variance. Finally,the segmentation process is done by the modified mean filter. The proposed technique hasthree phases. In phase 1, the speckle noise is reduced and the contrast adjustment is made.In phase 2, the segmentation of the enhanced image is processed. Finally, in phase 3, theisolated pixels in the segmented image are eliminated and the final segmented image isgenerated. This technique does not require any threshold value to segment the image; itwill be automatically calculated based on the mean value.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present work, the performance assessment of despeckle filtering algorithms has been carried out for (α) noise reduction in breast ultrasound images and (b) segmentation of benign and malignant tumours from breast ultrasound images. The despeckle filtering algorithms are broadly classified into eight categories namely local statistics based filters, fuzzy filters, Fourier filters, multiscale filters, non-linear iterative filters, total variation filters, non-local mean filters and hybrid filters. Total 100 breast ultrasound images (40 benign and 60 malignant) are processed using 42 despeckle filtering algorithms. A despeckling filter is considered to be appropriate if it preserves edges and features/structures of the image. Edge preservation capability of a despeckling filter is measured by beta metric (β) and feature/structure preservation capability is quantified using image quality index (IQI). It is observed that out of 42 filters, six filters namely Lee Sigma, FI, FB, HFB, BayesShrink and DPAD yield more clinically acceptable images in terms of edge and feature/structure preservation. The qualitative assessment of these images has been done on the basis of grades provided by the experienced participating radiologist. The pre-processed images are then fed to a segmentation module for segmenting the benign or malignant tumours from ultrasound images. The performance assessment of segmentation algorithm has been done quantitatively using the Jaccard index. The results of both quantitative and qualitative assessment by the radiologist indicate that the DPAD despeckle filtering algorithm yields more clinically acceptable images and results in better segmentation of benign and malignant tumours from breast ultrasound images.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.