Operational Modal Analysis (OMA) is becoming a mature and widespread technique for Structural Health Monitoring (SHM) of engineering structures. Nonetheless, while proved effective for global damage assessment, OMA-based techniques can hardly detect local damage with little effect upon the modal signatures of the system. In this context, recent research studies advocate for the use of wave propagation methods as complementary to OMA to achieve local damage identification capabilities. Specifically, promising results have been reported when applied to building-like structures, although the application of Seismic Interferometry to other structural typologies remains unexplored. In this light, this work proposes for the first time in the literature the use of ambient noise deconvolution interferometry (ANDI) to the structural assessment of long bridge structures. The proposed approach is exemplified with an application case study of a multi-span reinforced-concrete (RC) viaduct: the Chiaravalle viaduct in Marche Region, Italy. To this aim, ambient vibration tests were performed on February 4th and 7th 2020 to evaluate the lateral and longitudinal dynamic behaviour of the viaduct. The recorded ambient accelerations are exploited to identify the modal features and wave propagation properties of the viaduct by OMA and ANDI, respectively. Additionally, a numerical model of the bridge is constructed to interpret the experimentally identified waveforms, and used to illustrate the potentials of ANDI for the identification of local damage in the piers of the bridge. The presented results evidence that ANDI may offer features that are quite sensitive to damage in the bridge substructure, which are often hardly identifiable by OMA.
The main objective of this paper is to present the usefulness of the seismic interferometry method to determine the S-wave velocity model of the rock mass affected by exploitation in the KGHM Rudna copper ore mine. The research aim was achieved on the basis of seismic data, acquired from seismograms, of 10 strong seismic events of magnitude greater than 2.6. They were recorded by a pair of seismometers deployed on mining terrain. In the first stage, the Rayleigh wave between seismometers was estimated. Then, the group velocity dispersion curves of fundamental and first higher modes were identified. Finally, inversion of the dispersion curves to a 1D S-wave velocity model up to 500m in depth was obtained. The velocity model was determined for the part of the rock mass partially affected by mining. The results confirm similar rock mass structure and velocities of the subsurface layers as those obtained by the archival 3D model. In both models, a high degree of correlation in the boundary location between the overburden of the Cenozoic formations and the bedrock of the Triassic formations was observed. The applied methodology can be used to estimate the S-wave velocity model in other mining regions characterized by strong seismicity.
Interferometria sejsmiczna jest dynamicznie rozwijającą się metodą, której pierwsze zastosowania sięgają początków obecnego stulecia. Aktualnie znajduje coraz szersze zastosowanie w zagadnieniach m.in. obrazowania głębokich struktur ziemi oraz utworów przypowierzchniowych, monitorowania procesów wulkanicznych oraz analizowania wpływu silnych trzęsień ziemi na obiekty budowlane. Metoda ta pozwala na odtworzenie odpowiedzi impulsowej tzw. funkcji Greena ośrodka pomiędzy parą odbiorników na podstawie zarejestrowanych w tym samym czasie sejsmicznych pól falowych na tych odbiornikach. W wyniku odpowiednich operacji matematycznych metoda ta zamienia zarejestrowane na odbiornikach koherentne fale sejsmiczne o nieznanym czasie oraz miejscu ich wzbudzenia na układ tzw. wirtualnych źródeł emitujących sejsmiczne pole falowe z dowolnego odbiornika. W artykule przedstawiono fizyczne uzasadnienie wyników eksperymentu akustyki odwróconego czasu (ang. time-reversed acoustics) według Derode i in. (2003), które jest zarazem wytłumaczeniem metody interferometrii sejsmicznej. Eksperyment laboratoryjny w pierwszym etapie polegał na rejestracji akustycznego pola falowego wyemitowanego na brzegu naczynia wypełnionego cieczą i stalowymi prętami. Następnie rejestracje zostały odwrócone w czasie i wysłane powtórnie do wewnątrz naczynia i odebrany po przeciwnej stronie. Zarejestrowany na końcu sygnał okazał się zbliżony do sygnału wyemitowanego, pomimo przejścia przez ośrodek wielokrotnie rozpraszający. Doświadczenie to uzasadniono wykorzystując technikę korelacji wzajemnej (ang. cross-correlation), zasadę superpozycji pola falowego oraz zasadę wzajemności Rayleigha.
EN
Seismic interferometry is a geophysical method which has been developing very rapidly over the last decade. It has been applied to image deep structures of the Earth as well as near-surface, monitor volcanic processes, geothermal reservoirs within exploitation, rock mass deformation induced by mining, landslides, ground water storage, ice sheet or the impact of strong earthquakes to buildings. The vast majority of these applications use ambient seismic noise as a seismic source. This method involves reconstructing thte impulse response, the socalled Green’s function, between pair of receivers based on the wave field registered by them. Using seismic interferometry with various data processing flows the registered coherent seismic waves by the receivers can be changed to virtual sources which are placed in the receiver locations. In the article, the physical derivation of the time-reversed acoustics experiment which was introduced by Derode et. al. (2003) is presented. This derivation also explains the seismic interferometry method. The laboratory experiment contained two phases. First, an acoustics signal was emitted into the medium with hundreds of scatterers (cube with liquid and rods) and registered on the opposite side of the medium. Then, registrations were reversed and emitted back. Finally, the wave field refocused exactly in the point of initial excitation. Derode et. al. explain these results using the cross-correlation technique, superposition and Rayleigh’s reciprocity principles.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.