Herein, the stem bark extract of Piptadeniastrum africanum Hook (F.) (used in folklore medicine for treating several illnesses), were screened for phytochemicals. The chemical screening revealed the presence of some phytochemicals - saponins, alkaloids, tannins, anthraquinones, glycosides and cardiac glycosides. Other phytochemicals - phenols and flavonoids - were absent in the bark extract. Proximate analysis on the bark extract also showed the presence of ash, fat, carbohydrate, moisture content and crude protein. The presence of these phytochemicals lends credence to the medicinal benefits it has been used for in the past years.
The physicochemical properties of solid wastes were determined to unravel the individual components of solid wastes such as density, moisture content, and percentage mass. The chemical composition of each waste component was also determined. Methods adopted in the determination included the load count and mass volume methods, the proximate and ultimate analysis method. Collectively, the percentage chemical constituents were obtained from the different solid waste samples analyzed. Energy values obtained from the constituents are 47.6 and 47.10 kJ/kg when Dulong’s and Davies’ formula were applied, respectively. The results revealed that paper and cardboard, metals, plastics, and wood make up the highest composition in the five major waste dumpsites studied in Awka, Nigeria. It also showed that carbon and oxygen contents are high in most of the solid waste components when compared to other chemical constituents and that these wastes can be converted to useful energy in furtherance of sustainable development.
Herein, a proximate analysis of processed Parkia biglobosa (PB) was undertaken. The properties determined for the sample were Moisture content, Ash, Crude fibre, Protein, Fat, and Carbohydrate. Triplicate analysis were carried out for each parameter. The result of the study shows that processed PB seed contains appreciable quantities of nutrients required for the body, allied with low levels of inorganic impurities.
Background. The lentil plant, Lens culinaris L., is a member of the Leguminoceae family and constitutes one of the most important traditional dietary components. The purpose of the current study was to investigate the effects of sprouting for 3, 4, 5 and 6 days on proximate, bioactive compounds and antioxidative characteristics of lentil (Lens culinaris) sprouts. Material and methods. Lentil seeds were soaked in distilled water (1:10, w/v) for 12 h at room temperature (~25°C), then kept between thick layers of cotton cloth and allowed to germinate in the dark for 3, 4, 5 and 6 days. The nutritional composition, protein solubility, free amino acids, antinutritional factors, bioactive compounds and antioxidant activity of raw and germinated samples were determined using standard official procedures. Results. Sprouting process caused significant (P < 0.05) increases in moisture, protein, ash, crude fiber, protein solubility, free amino acids, total, reducing and nonreducing sugars. However, oil content, antinutritional factors (tannins and phytic acid) significantly (P < 0.05) decreased. Results indicated that total essential amino acids of lentil seeds protein formed 38.10% of the total amino acid content. Sulfur-containing amino acids were the first limiting amino acid, while threonine was the second limiting amino acid in raw and germinated lentil seeds. Sprouting process has a positive effect on the essential amino acid contents and protein efficiency ratio (PER) of lentil sprouts. Phenolics content increased from 1341.13 mg/100 g DW in raw lentil seeds to 1411.50, 1463.00, 1630.20 and 1510.10 in those samples germinated for 3, 4, 5 and 6 days, respectively. Sprouted seeds had higher DPPH radical scavenging and reducing power activities. Conclusions. Based on these results, sprouting process is recommended to increase nutritive value, and antioxidant activity of lentil seeds.
Turkey has 19.3 billion tons of lignite reserves and the vast majority of these Neogene lignite deposits are preferred for use in thermal power plants due to their low calorific value. The calorific value of lignite used in thermal power plants for electricity generation must be kept under constant control. In the control of calorific value, the estimation of the lower and higher heating values (LHV and HHV) of lignite is of great importance. In the literature, there are many studies that establish a relationship between the heating values of coal and proximate and ultimate analysis variables. In the studies dealing with proximate analysis data, it is observed that although the coefficients of the obtained multiple linear regression models (MRM) are statistically insignificant, these models are used to predict heating values because of the meaningful correlation coefficient. In this study, it is investigated whether moderator variables are effective on LHV estimation with proximate analysis data collected from forty-one lignite basins in different regions of Turkey, and a moderator variable analysis (MVA) model is developed to be used for the prediction of LHV. As a result of the study, it is found that the proposed MVA model is in accordance with observation values (coefficient of determination R2 = 0.951), and absolute and standard errors are also small. Therefore, it is concluded that the use of MVA to estimate the LHV of Turkey’s lignite is found to be more statistically meaningful.
PL
Turcja posiada 19,3 mld ton zasobów węgla brunatnego, a zdecydowana większość tych neogeńskich złóż węgla brunatnego jest preferowana do wykorzystania w elektrowniach cieplnych ze względu na ich niską wartość opałową. Wartość opałowa węgla brunatnego wykorzystywanego w elektrowniach ciepłowniczych do produkcji energii elektrycznej musi być stale kontrolowana. W procesie kontroli wartości opałowej bardzo ważne jest oszacowanie wartości opałowej i ciepła spalania węgla brunatnego. W literaturze istnieje wiele badań, które ustalają związek między wartościami opałowymi węgla a zmiennymi analizy przybliżonej (technicznej) i końcowej. W badaniach dotyczących danych analizy technicznej zaobserwowano, że chociaż współczynniki uzyskanych modeli wielokrotnej regresji liniowej (MRM) są statystycznie nieistotne, modele te są wykorzystywane do przewidywania wartości opałowych ze względu na znaczący współczynnik korelacji. W niniejszym artykule zbadano, czy zmienne moderatora są skuteczne w szacowaniu wartości opałowej (LHV) na podstawie danych z analizy technicznej zebranych z czterdziestu jeden zagłębi węgla brunatnego w różnych regionach Turcji, a także opracowano model analizy zmiennych moderatora (MVA), który ma być wykorzystywany do przewidywania LHV. W wyniku badań stwierdzono, że proponowany model MVA jest zgodny z wartościami obserwacji (współczynnik determinacji R2 = 0,951), a błędy bezwzględne i standardowe są również niewielkie. W związku z tym stwierdzono, że wykorzystanie MVA do oszacowania LHV tureckiego węgla brunatnego jest statystycznie uzasadnione.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.