This paper presents the results of a metrological analysis of the additively manufactured (AM) copies of a complex geometrical object, namely the fossil skull of Madygenerpeton pustulatum. This fossil represents the unique remains of an extinct “reptiliomorph amphibian” of high importance for palaeontological science. For this research, the surface was scanned and twelve different copies were 3D-printed using various devices, materials, and AM techniques. The same digitized model was used as a reference to compare with the surfaces obtained by Mitutoyo Coordinate Measuring Machine (CMM) CRYSTA-Apex S 9166 for each copy. The fidelity of the copies was assessed through statistical analysis of the distances between compared surfaces. The methodology provided a good background for the choice of the most accurate copies and the elimination of the less accurate ones. The proposed approach can be applied to any object of complex geometry when reproduction accuracy is to be assessed.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
3D printing of concrete structures has had a strong development in recent years, enhanced by the advantages it presents over traditional construction. However, it currently still has some limitations. One of those limitations is to incorporate the reinforcements into the automated 3D printing process. The objective of this work is to present a review of the methods that have been used so far to reinforce the structures. The different methods used will be presented focusing on the reinforcement by the use of fibers. The properties of the fibers, lengths, and percentages of the same used in the mixtures will be analyzed. The results of the different tests will be shown making a comparison between the values obtained from the tests carried out with the printed and molded materials. Finally, the increases in the results of the tests that these fibers provide with respect to the samples without them will be analyzed.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Experimental and modeling studies of the evolution of plate-like δ phase precipitates in Inconel 625 superalloy additively manufactured by the laser powder bed fusion process are performed. The maximum Feret diameter and the number of particles per unit area are used as parameters describing the size and distribution of the δ phase precipitates. On the basis of microstructural analysis and quantitative image analysis, the effect of time and temperature on the development of δ phase precipitates is determined. The distinct differences in the intensity of precipitation, growth, and coarsening of the δ phase precipitates during annealing at temperatures of 700 and 800 °C up to 2000 h are shown. The experimental results are compared with computational data obtained by thermodynamic modeling. Using the experimentally determined parameters of the δ phase precipitates in different variants of annealing, a fuzzy logic-based phase distribution model is designed. Since the quantity of available data was too small to train a model with the machine learning approach, expert knowledge is used to design the rules, while numerical data are used for its validation. Designed rules, as well as reasoning methodology are described. The proposed model is validated by comparing it with the experimental results. It can be used to predict the size and number density of the δ phase precipitates in the additively manufactured Inconel 625, subjected to long-term annealing at temperatures of 700-800 °C. Due to limited experimental data, the quality of assurance is not perfect, but warrants preliminary research.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Additive Manufacturing processes are being used increasingly in the scope of medicine and dentistry. As indicated by literature data, the durability and quality of medical implants is decisively influenced by surface modification. Insufficient quality of surface finishing leads, among others, to reduced service life of applied implants and to increased number of necessary revision surgeries. Furthermore, various types of finishing processes e.g. cleaning, shot peening or abrasive techniques are suggested by the manufacturers of products made by means of DMLS processes. Due to this fact, the analysis of proper formation of the surface layer of titanium products made by means of the method consisting in the direct laser sintering of metal powders (DMLS) was the subject matter of our research. Therefore, Ti-6Al-4V titanium alloy has been used for tests. The samples have been produced by means of EOSINT M280 system dedicated for laser sintering of metal powders. The surfaces of prepared samples have been subjected to shot peening process at three different values of working pressure (0.2, 0.3 and 0.4 MPa) by means of three different working media i.e. CrNi steel shot, crushed nut shells and ceramic balls. The characteristics of the materials used for shot peening process have been determined by means of Zeiss Ultra Plus scanning electron microscope. The samples have been subjected to profilometric measurements on Bruker Contour GT optical profilometer and the corrosion behaviour of Ti-6Al-4V titanium alloy in Ringer solution has been determined in electrode impedance spectroscopy (EIS) measurements by means of Atlas 0531 set dedicated for corrosion testing. The overall results of all tests indicate to favourable influence of the shot peening process on the corrosion behaviour of titanium alloy.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, spin welding was used to join 3D-printed (3dp) and solid acrylonitrile-butadiene-styrene (ABS) rods. The fused filament fabrication method was utilized to make the 3dp ABS rods. These rods had a diameter of 12.5 mm and internal fill percentages of 50, 75, and 100. At three different spindle speeds, 710, 1000, and 1400 rpm, two distinct joints were created: 3dp/3dp and 3dp/solid joints. These weld joints' tensile characteristics were investigated. The fracture section of the joints was analyzed employing field-emission scanning electron microscopy, and the causes for the fracture of the joints were explored. Furthermore, the effects of the fill percentage and spindle speed on the joint’s tensile strength were studied using analysis of variance (ANOVA). Moreover, functional predictive equations for estimating weld strength were established. According to the results, the joints typically failed due to brittle fracture in the 3dp component of the weld joints. Furthermore, it was found that increasing the fill percentage and spindle speed enhanced the tensile strength of the weld joints. Moreover, 3dp/solid joints were stronger than 3dp/3dp joints.
Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process. The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
Inter-operational surgery supplies manufactured additively using the FDM (Fused Deposition Modelling) technology are required to be sterilized before use. After manufacturing, the part should be sterilized using one of commonly used processes, without losing its dimensions and shape. The paper presents studies on manufacturing and sterilizing samples made out of ABS material and influence of the sterilization process on the dimensional accuracy of these samples.
The deployment of appropriate technologies to enhance modern agricultural practices and improve crop yields is imperative for sustainability. This paper presents the development of a standalone automated irrigation system. The system design features good automation and control, which was achieved using an array of electronic timing system, soil feedback sensor and wireless communication system. Autonomous irrigation events are based on the states of the timing system, the soil feedback system and the wireless communication system. The control and automation of these systems was done using an AVR microcontroller, which was programmed to trigger intelligent and independent farm irrigation operation through a water pump attached to the system. The system also operates remotely via SMS command from mobile device and sends operational status feedback via SMS to preprogrammed mobile user(s). It also sends soil moisture condition to a remote user upon query. The system package was produced using additive manufacturing technique. The power supply system was implemented using solar power system in order to achieve a standalone, autonomous and reliable power supply necessary for an independent operation. The performance evaluation of the developed system show impressive response time, good reliability and excellent stability. Furthermore, the numerical experiment conducted using the Response Surface Methodology (RSM) produced a mathematical model for the optimization of the irrigation process for optimum performance and cost effectiveness.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The investigations have been carried out on 316L stainless steel parts fabricated by Selective Laser Melting (SLM) technique. The study aimed to determine the effect of SLM parameters on porosity, hardness, and structure of 316L stainless steel. Design/methodology/approach: The analyses were conducted on 316L stainless steel parts by using AM125 SLM machine by Renishaw. The effects of the different manufacturing process parameters as power output, laser distance between the point’s melted metal powder during additive manufacturing as well as the orientation of the model relative to the laser beam and substrate on porosity, hardness, microstructure and roughness were analysed and optimised. Findings: The surface quality parts using 316L steel with the assumed parameters of the experiment depends on the process parameters used during the SLM technique as well as the orientation of formed walls of the model relative to the substrate and thus the laser beam. The lowest roughness of 316L SLM parts oriented perpendicularly to the substrate was found when 100 W and 20 μm the distance point was utilised. The lowest roughness for part oriented at 60° relatives to the substrate was observed when 125 W and the point distance 50 μm was employed. Practical implications: Stainless steel is one of the most popular materials used for selective laser sintering (SLM) processing to produce nearly fully dense components from 3D CAD models. Reduction of porosity is one of the critical research issues within the additive manufacturing technique SLM, since one of the major cost factors is the post-processing. Originality/value: This manuscript can serve as an aid in understanding the importance of technological parameters on quality and porosity of manufactured AM parts made by SLM technique.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The literature abounds with many distinct topology optimisation methods, many of which share common parameter configurations. This study demonstrates that alternative parameter configurations may produce better results than common parameters. Additionally, we try to answer two fundamental questions: identifying the most effective topology optimisation method and determining the optimal parameter selection within this optimisation method. In order to respond to these questions, we conducted a comparative and objective analysis of topology optimisation methods. Design/methodology/approach: This paper evaluates four prominent topology optimisation methodologies, SIMP, RAMP, BESO, and LSM, based on three essential criteria: structural strength, topology quality, and computational cost. We conducted an in-depth examination of 12,500 topology optimisation results spanning a broad range of critical parameter values. These outcomes were generated using MATLAB codes. In the meantime, we comprehensively compared our findings with the existing literature on this subject. Findings: As predicted, our chosen parameters had a substantial effect on the topology quality, structural strength, and computational cost of the topology optimisation outcomes. Across the 12,500 results, many parameter combinations appeared to produce favourable results compared to conventional parameters commonly found in the existing literature. Research limitations/implications: This study focuses exclusively on four specific topology optimisation methods; however, its findings may be extrapolated to apply to other methodologies. Additionally, while it extensively examines the effects of parameters on topology quality, strength, and computational cost, it does not encompass an exploration of these parameters' impacts on other performance criteria. Originality/value: Novel parameter configurations for topology optimisation have been identified, yielding enhanced outcomes in terms of topology quality, structural strength, and computational efficiency.
The paper is related to the material behaviour of additively manufactured samples obtained by the direct metal laser sintering (DMLS) method from the AlSi10Mg powder. The specimens are subjected to a quasi-static and dynamic compressive loading in a wide range of strain rates and temperatures to investigate the influence of the manufacturing process conditions on the material mechanical properties. For completeness, an analysis of their deformed microstructure is also performed. The obtained results prove the complexity of the material behaviour; therefore, a phenomenological model based on the modified Johnson–Cook approach is proposed. The developed model describes the material behaviour with much better accuracy than the classical constitutive function. The resulted experimental testing and its modelling present the potential of the discussed material and the manufacturing technology.
This paper attempts to conduct a comparative life cycle environmental analysis of alternative versions of a product that was manufactured with the use of additive technologies. The aim of the paper was to compare the environmental assessment of an additive-manufactured product using two approaches: a traditional one, based on the use of SimaPro software, and the authors’ own concept of a newly developed artificial intelligence (AI) based approach. The structure of the product was identical and the research experiments consisted in changing the materials used in additive manufacturing (from polylactic acid (PLA) to acrylonitrile butadiene styrene (ABS)). The effects of these changes on the environmental factors were observed and a direct comparison of the effects in the different factors was made. SimaPro software with implemented databases was used for the analysis. Missing information on the environmental impact of additive manufacturing of PLA and ABS parts was taken from the literature for the purpose of the study. The novelty of the work lies in the results of a developing concurrent approach based on AI. The results showed that the artificial intelligence approach can be an effective way to analyze life cycle assessment (LCA) even in such complex cases as a 3D printed medical exoskeleton. This approach, which is becoming increasingly useful as the complexity of manufactured products increases, will be developed in future studies.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.