Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magnesium salt
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To reveal seepage mechanism during in-situ leaching process of weathered crust elution deposited rare earth ores with magnesium salt, the effects of particle gradation, particle migration, Atterberg limit on the permeability coefficient were investigated, and the relation between the particle size and rare earth content was discussed. The results showed that the ore in the humic layer (HL) with high porosity and permeability was uniformly graded particles. The ore in the completely weathered layer (CWL) with low porosity and permeability belonged to dense-graded particles. The ore in the partly weathered layer (PWL) was open-graded particles, whose permeability fell in between the HL and the PWL. The change of -0.075mm particles content was the largest in the leaching process. When - 0.075mm particle content was less than 30%, the migration ability of fine particles and the permeability coefficient decreased gradually. On the contrary, the migration ability of fine particles gradually remained stable, and the change in the permeability coefficient was not obvious. The liquid limit (LL) in the Atterberg limit of HL, CWL and PWL was inversely proportional to the permeability coefficient, and followed the order: LLHL < LLPWL < LLCWL. With the -0.075mm particle content increasing, the LL of the ore samples increased gradually and finally tended to be stable. The peak value of rare earth concentration appeared earlier and the rare earth content decreased gradually with the increase of the ore particle size. This work provided a theoretical basis for achieving high-efficient mining of weathered crust elution-deposited rare earth ores.
|
|
tom 63
|
nr 1
EN
In a pot experiment conducted in a phytotron, the effectiveness of foliar nutrition of spinach (Spinacia oleracea L.) with different magnesium salts with and without the addition of 0.5% CO(NH2)2 was studied. Magnesium was applied 3 times in the form of solutions of MgSO4 x 7H2O, Mg(NO3)2 x 6H2O, MgCl2 x 6H2O, C4H6O4Mg x 4H2O, compared to water as the control treatment. The obtained results showed that foliar feeding of spinach with inorganic magnesium salts was an efficient method for supplementing the Mg level in plants during the growing period. But the application of a metalo-organic complex in the form of magnesium acetate (C4H6O4Mg x 4H2O) at a concentration of 1.7%, in spite of a similar effect on leaf Mg content, induced phytotoxic symptoms in the form of chlorotic and necrotic spots on the leaves. The application of the solutions of inorganic magnesium salts had a significant effect, resulting in more intensive leaf gas exchange (stomatal conductance, transpiration and photosynthesis) and an increase in leaf yield. Magnesium sulphate affected the abovementioned processes in the most effective way, while magnesium acetate had a negative impact. Foliar feeding of spinach with the magnesium salts resulted in an increased leaf content of protein, chlorophyll, carotenoids, nitrates and proline, but a decrease in vitamin C content. The addition of urea to the applied magnesium salt solutions increased the plant gas exchange rates and the leaf content of protein, chlorophyll, carotenoids, nitrates and proline, but it decreased the content of vitamin C, potassium and magnesium.
EN
These studies concern the effect of the concentration of MMPP (magnesium monoperoxyphtalate), a compound used (among others) in hygiene products (Lonzabac-MP) on the kinetics of microbiological processes involving the following species of bacteria: Bacillus licheniformis (denitrification), Desulfotomaculum ruminis (desulfurication) and Thiobacillus ferrooxidans (oxidation of iron II ions and reduced sulphur compounds). Results enabled determination of the microbiological activity of MMPP and the limits of its admissible and toxic (inhibiting transformation cycles of sulphur and nitrogen) concentrations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.