Since more than 100 years ago a simple assembly line was introduced in the American Ford automotive factory. Nowadays we can find papers and books with description of different structures and different kinds of production. This article deals with the problem of low production demand which is coming from the market and considers three different manufacturing structures: single (straight) assembly line, U-line and assembly round table. The description of all above mentioned structures is given. The fundamental assumptions according to balancing problem are shown. Selected heuristics methods for solving assembly line balancing problem are described. Advantages and disadvantages of these structures are considered. Also numerical examples are calculated and final results are estimated (smoothness index, line efficiency, time of line, number of turns for rotating round table). At the end the conclusions and remarks are presented.
The article discusses and analyzes the conceptual apparatus, features and concepts of heuristic learning. The ways of implementing heuristic learning at biology lessons in specialized classes, the goals, the content, the methods, the forms, the tools and its educational possibilities are outlined. It is noted that the efficiency of heuristic learning depends on the integration of all components in the educational process and ensures the students’ specialized competence, the development of creative abilities, skills of productive activity and reflexive skills. The problem of formation of readiness of the senior pupils to the choice of profession is very important in modern conditions. The need for formation of professionally significant qualities of the students of specialized classes is caused by the rapid development of biological science, intellectualization of labor integration of Ukrainian education into the international educational space. The realization of the goals of biological science is possible through the use of heuristic learning, based on the main principle of heuristics – search, discovery, create a new one. Productivity of heuristic learning is provided by: the students’ motivation for productive activity; active involvement of the students in creative activity; the interrelatedness of the forms, methods, techniques, tools with the didactic principles of developmental education; use of heuristic methods, the system of heuristic tasks while studying biology; heuristic pedagogical support activity; systematic use of heuristic methods, techniques, forms that are organically combined with the traditional heuristic and mainstreaming situations. The didactic possibilities of heuristic learning are to improve the efficiency of study, the formation of the cognitive motives, the strong system of knowledge, the students’ specialized competence, the students’ creative activity in the study of biology, providing independent creative obtaining, transformation and use of knowledge, the development of creative thinking, skills of productive activities, reflective skills and creative abilities. The prospect of further studies is to improve the theoretical and methodological foundations of the heuristic teaching of biology in specialized classes.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Gwałtowny wzrost pojemności baz danych oraz znaczne zwiększenie wymiarowości rozpatrywanych zbiorów wymusza wykorzystanie do ich analizy skutecznych metod komputerowych. Głównym celem artykułu jest zaprezentowanie możliwości zastosowania oraz skuteczności ewolucji różnicowej w zadaniu klasteryzacji z ograniczeniami, które stanowi wariant jednego z najważniejszych zagadnień eksploracji danych. W artykule przedstawiono formalnie zadanie klasteryzacji z ograniczeniami oraz metodę ewolucji różnicowej wraz z jej implementacją Zaprezentowano również wyniki badań eksperymentalnych, w tym dotyczących klasteryzacji zestawów przebiegów czasowych. Mogą być one zinterpretowane jako przykład grupowania pomiarów wartości elektrycznych.
EN
Rapid increase of database capacity and high dimensionality of considered datasets forces the usage of effective computer methods to their analysis. The main goal of this paper is a presentation of possibility of employing and efficiency of Differential Evolution in the constrained clustering, a variant of one of the most important data mining tasks. In the paper the constrained clustering task and Differential Evolution method, with it's implementation, was presented. Moreover, the results of the experimental studies were shown, including the clustering of time series set. It could be interpreted as an example of grouping of electrical variables measurement.
Numerical methods are widely used for many years in the design and operation of water supply systems. Computer technology is characterized by very dynamic progress in the field of hardware and software. Specialized computer programs offer more and more features, especially in the field of data entry and viewing the results, but still operate on the basis of pre-defined algorithms. Currently we are dealing with a turbulent development of artificial intelligence techniques. Probably will never computational programs that completely will replace the operator of the need to make key decisions, but in recent years the aim is to develop computer programs that will be characterized by at least a small degree of creativity. For this purpose, the traditional calculation programs are supplemented by artificial intelligence methods, including artificial neural networks, expert systems, heuristic methods. The above trend can also be observed in issues related to water supply in the problems of design and operational. The literature proposals for the use of artificial intelligence at the stage of water treatment, disinfection, pumping, hydraulic design and simulation of water distribution systems and other components. Have taken a lot of optimization problems that are very difficult to solve by conventional methods. In this paper, some examples of the use of artificial intelligence methods in problems of water supply, indicating that these are the solutions that pave the way for the implementation in practice of design and operation. A wide range of artificial intelligence methods requires careful analysis that the method can be applied to individual problems. Also require a thorough knowledge of ongoing work in this regard.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Innowacje w obecnym czasie są jednymi z kluczowych czynników zdobywania przewagi konkurencyjnej. Źródła innowacji w przedsiębiorstwie są różnorakie. Mogą to przykładowo być potrzeby wynikające z niedoskonałości procesów zachodzących w przedsiębiorstwie, które mogą inicjować sami pracownicy celem podniesienia wydajności swojej pracy. W artykule zaprezentowano niektóre z metod heurystycznych, które mogą być wykorzystywane w procesie wdrażania innowacji.
EN
Innovations are one of the key factors for acquiring competitive advantage. Sources of innovations in enteprise are different. There can be needs connected with disadvantages of processes in enteprise, which can be modified by workers to increase their efficiency. This article presents some of heuristic methods, which can be used in innovation implementation process.
In the age of the information society, determined by the evolution of digital technology, information has become an essential element of the functioning of every human being. Its acquisition, processing and distribution serves to satisfy the key areas of society's life and constitutes a necessary component of every decision-making process. These days became dominated by the increasing demand for information. The problem of its protection against unwanted obtaining (disclosure) has become a challenge for many scientific communities. This state of affairs has forced us to take a number of steps to ensure the security of useful information, characterized by accuracy, unambiguity, completeness and authenticity. The problem of information security is inseparably linked to the threats present in the cyberspace environment. They are commonly identified with the so-called computer crime, resulting in factors like: infiltration, obtaining passwords and other data used for logging in, identity theft, damage (blocking) of systems and their software. Information manipulation is a completely different and underestimated threat to rational decision-making process. Wherefore, useful information that is characterized by the expected properties, is exposed not only to destruction or unauthorized acquisition, but also to distortion. Rising anxiety about the credibility of the information received in the virtual space and the sources of its transmission forced the need to distinguish the real form from the one that was modified. The presented conditions prompted the author to propose solutions with regard to information security, determined by the difficulty of obtaining it and manipulating it.
Background: The paper deals with production process scheduling problem. In large companies, the decision-making process about operators' work, machines availability and production flow is a very difficult task, which is often being done by employees. Thus, not always the decision made is optimal in terms of cost, production time, etc. Methods: As a solution, two intelligent methods: Tabu Search and the genetic algorithm have been analyzed in field of production scheduling. The aim of this work was to examine the possibility of improving presented decision-making process that is being performed when scheduling, using Tabu Search and genetic algorithms. As a result of experimental research, it has been confirmed that the use of appropriately selected and parameterized intelligent methods allows for the optimization of the analyzed production process due to its duration. The research was case of study performed in cooperation with company that produces components for automotive industry. Results: Basing on collected and analyzed data, considered methods can be more or less successfully used in production process scheduling. Comparing both used algorithms, Tabu Search twice proposed worse solutions, the average operational time was 1.63% shorter than the actual one. In this case, better results were reached by using genetic algorithm - potential operational time was always shorter than the actual one, and it was reduced by 6.3% in total on average. Conclusion: Using algorithms allowed to achieve lower workload of employees and to reduce of operational time, which were the evaluation criteria in performed research. Managers of the analyzed company were pleased with the proposed solution and declared interest in developing these methods for future. This shows that intelligent methods can find, in relatively short time, the solution that is close to the optimal and acceptable from the problem point of view.
PL
Wstęp: Artykuł opisuje problem harmonogramowania procesów produkcyjnych. W dużych przedsiębiorstwach proces podejmowania decyzji dotyczących pracy operatorów, maszyn, dostępności zasobów i przepływu produkcji jest bardzo złożonym zadaniem, często wykonywanym przez pracowników. W związku z tym podjęte decyzje nie zawsze są optymalne w kontekście kosztów, czasu produkcji itp. Metody: Jako rozwiązanie, przeanalizowane zostało użycie, w obszarze harmonogramowania produkcji, dwóch metod inteligentnych: Tabu Search i algorytmów genetycznych. Celem pracy było zbadanie możliwości doskonalenia procesu podejmowania decyzji, który jest wykonywany przy harmonogramowaniu produkcji, przy pomocy Tabu Search i algorytmów genetycznych. Jako wynik eksperymentu przeprowadzonego podczas badań, potwierdzono, że użycie odpowiednio wybranych oraz sparametryzowanych metod inteligentnych pozwala na optymalizację analizowanego procesu produkcji. Badania zostały wykonane we współpracy z przedsiębiorstwem zajmującym się produkcją komponentów dla branży motoryzacyjnej, jako studium przypadku. Wyniki: Zgodnie z zebranymi i przeanalizowanymi danymi, wybrane metody mogą być z mniejszym bądź większym powodzeniem stosowane w procesie harmonogramowania produkcji. Porównując zastosowane algorytmy, Tabu Search dwukrotnie zaproponował rozwiązanie gorsze od aktualnego podejścia przedsiębiorstwa, jednak czas produkcji został skrócony średnio o 1.63%. W tym przypadku, lepsze wyniki pozwoliło osiągnąć zastosowanie algorytmu genetycznego - potencjalny czas produkcji był zawsze krótszy od aktualnie stosowanego rozwiązania, a średni czas produkcji został zredukowany o 6.3%. Wnioski: Zastosowanie algorytmów pozwoliło na osiągnięcie niższego obciążenia pracą operatorów oraz zredukowanie czasu operacyjnego, co stanowiło kryteria oceny w przeprowadzonych badaniach. Kierownictwo analizowanego przedsiębiorstwa było zadowolone z zaproponowanych rozwiązań. Zdecydowali się na stosowanie omawianych metod w codziennym harmonogramowaniu produkcji oraz zadeklarowali zainteresowanie rozwojem stosowania metod w przyszłości. Metody inteligentne pozwalają znaleźć, w relatywnie krótkim czasie, rozwiązanie bliskie optymalnemu i akceptowalne z punktu widzenia analizowanego problemu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.