Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  evolutionary PDE
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Physics-based optical flow models have been successful in capturing the deformities in fluid motion arising from digital imagery. However, a common theoretical framework analyzing several physics-based models is missing. In this regard, we formulate a general framework for fluid motion estimation using a constraint-based refinement approach. We demonstrate that for a particular choice of constraint, our results closely approximate the classical continuity equation-based method for fluid flow. This closeness is theoretically justified by augmented Lagrangian method in a novel way. The convergence of Uzawa iterates is shown using a modified bounded constraint algorithm. The mathematical well-posedness is studied in a Hilbert space setting. Further, we observe a surprising connection to the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving the divergence and the curl of the flow. Several numerical experiments are performed and the results are shown on different datasets. Additionally, we demonstrate that a flow-driven refinement process involving the curl of the flow outperforms the classical physics-based optical flow method without any additional assumptions on the image data.
2
100%
EN
The goal of this paper is to propose two nonlinear variational models for obtaining a refined motion estimation from an image sequence. Both the proposed models can be considered as a part of a generalized framework for an accurate estimation of physics-based flow fields such as rotational and fluid flow. The first model is novel in the sense that it is divided into two phases: the first phase obtains a crude estimate of the optical flow and then the second phase refines this estimate using additional constraints. The correctness of this model is proved using an evolutionary PDE approach. The second model achieves the same refinement as the first model, but in a standard manner, using a single functional. A special feature of our models is that they permit us to provide efficient numerical implementations through the first-order primal-dual Chambolle-Pock scheme. Both the models are compared in the context of accurate estimation of angle by performing an anisotropic regularization of the divergence and curl of the flow respectively. We observe that, although both the models obtain the same level of accuracy, the two-phase model is more efficient. In fact, we empirically demonstrate that the single-phase and the two-phase models have convergence rates of order O(1/N²) and O(1/N) respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.