According to the principal control point (PCP) hypothesis, experiments with excised, carbohydrate-starved stationary root meristems of Vicia faba var. minor have demonstrated that cells which previously divided asynchronously were preferentially blocked in G1 (PCP1) and G2 (PCP2) phases. When stationary phase meristems are supplied with exogenous carbohydrate (2 % sucrose), the G1- and G2-arrested cells start out DNA replication and mitotic divisions, respectively. The resumption of DNA synthesis and mitosis is not immediate and the delays of Gi - and G2-arrested cells are found different. Using this model, we examined the effects of 4 pulse incubations with okadaic acid (OA), a specific inhibitor of PP1 and PP2A, on the duration of intervals elapsing between the provision of sucrose and the first appearance of S- and M-phase cells. We have found that depending on the period during which OA had been applied, the release from G1 and G2 phase arrest-points becomes prolonged, showing different time-course modifications The obtained data provide evidence that activation of PP1 and PP2A is required to allow the cells for both PCP1→S and PCP2→M transitions in root meristems of V. faba.
Winter survival of cereals and grasses depends mainly on plant resistance to low temperature and to snow mould fungi. To persist winter plants have to be tolerant to different kind of stresses: abiotic such as low temperature, long-term snow and ice cover, freeze-induced plant desiccation or frequent freezing and thawing, and biotic - many species of snow mould fungi. During the cold acclimation, cereals and grasses become more resistant to both stresses: cold and snow mould. Earlier seeded plants with a greater number of crowns are more resistant to snow mould. Infection caused by snow mould induces a complex plant response, including such processes as the synthesis of PR (pathogenesis-related) proteins (chitinase and β-1,3-glucanas), production of active oxygen species (AOS), synthesis of phenolics, phyotalexins, accumulation of callosis and soluble carbohydrates, and a decrease of water potential. In the paper the most common defence mechanisms against snow mould pathogens are discussed.
PL
Zimotrwałość traw i zbóż ozimych zależy głównie od ich odporności na niską temperaturę i patogeny powodujące pleśń śniegową. Aby przetrzymać warunki zimowe rośliny muszą charakteryzować się tolerancją, zarówno na takie stresy abiotyczne, jak niska temperatura, długo zalegająca pokrywa śniegowa, ograniczony dostęp tlenu i światła, wysychanie tkanek pod wpływem mrozu, czy częste zamarzanie i tajanie, jak też stresy biotyczne, czyli wiele gatunków grzybów rozwijających się pod śniegiem w niskiej temperaturze. Odporność na oba rodzaje stresów rośliny nabywają w czasie aklimacji odbywającej się podczas obniżających się temperatur jesienią i na początku zimy. Odporność na warunki zimowe jest wyższa u roślin wysianych wcześniej i lepiej rozkrzewionych. Infekcja grzybami pleśni śniegowej indukuje w roślinach szereg procesów obronnych, do których zaliczana jest synteza białek typu PR (ang. pathogensis-related), jak chitynaza czy β-1,3-glukanaza, produkcja reaktywnych form tlenu, synteza związków fenolowych, fitolaeksyn, akumulacja kallozy, rozpuszczalnych węglowodanów czy obniżanie potencjału wody komórek. W prezentowanym artykule omówiono najczęściej spotykane mechanizmy odpornościowe uruchamiane w reakcji na atak grzybów niskotemperaturowych.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.