Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cancer detection
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A Weighted Threshold for Detection of Cancerous miRNA Expressions
100%
EN
MicroRNAs (miRNA) are one kind of non-coding RNA which play many important roles in eukaryotic cell. Investigations on miRNAs show that miRNAs are involved in cancer development in animal body. In this article, a threshold based method to check the condition (normal or cancer) of miRNAs of a given sample/patient, using weighted average distance between the normal and cancer miRNA expressions, is proposed. For each miRNA, the city block distance between two representatives, corresponding to scaled normal and cancer expressions, is obtained. The average of all such distances for different miRNAs is weighted by a factor, to generate the threshold. The weight factor, which is cancer dependent, is determined through an exhaustive search by maximizing the F score during training. In a part of the investigation, a ranking algorithm for cancer specific miRNAs is also discussed. The performance of the proposed method is evaluated in terms of Matthews Correlation Coefficient (MCC) and by plotting points (1 – Specificity vs: Sensitivity) in Receiver Operating Characteristic (ROC) space, besides the F score. Its efficiency is demonstrated on breast, colorectal, melanoma lung, prostate and renal cancer data sets and it is observed to be superior to some of the existing classifiers in terms of the said indices.
EN
Cancer is a deadly disease that has gained a reputation as a global health concern. Further, lung cancer has been widely reported as the most deadly cancer type globally, while colon cancer comes second. Meanwhile, early detection is one of the primary ways to prevent lung and colon cancer fatalities. To aid the early detection of lung and colon cancer, we propose a computer-aided diagnostic approach that employs a Deep Learning (DL) architecture to enhance the detection of these cancer types from Computed Tomography (CT) images of suspected body parts. Our experimental dataset (LC25000) contains 25 000 CT images of benign and malignant lung and colon cancer tissues. We used weights from a pre-trained DL architecture for computer vision, EfficientNet, to build and train a lung and colon cancer detection model. EfficientNet is a Convolutional Neural Network architecture that scales all input dimensions such as depth, width, and resolution at the same time. Our research findings showed detection accuracies of 99.63%, 99.50%, and 99.72% for training, validation, and test sets, respectively.
EN
The discovery of circulating nucleic acids in the 1940s opened up new possibilities for the non-invasive detection, monitoring and screening of various human disorders. Several tumour markers that enable early cancer detection or tumour behaviour prediction have been detected in the plasma of cancer patients. Maternal plasma analysis can be used to detect certain fetal abnormalities, with the quantification of cell-free nucleic acids used to screen for several pregnancy-associated disorders. Some other applications are in transplant monitoring and graft rejection assessment, and in certain medical emergencies such as trauma and burn severity stratification. Many studies have yielded promising results in this field, but the techniques have yet to be applied in routine clinical practice. Large-scale studies using similar technologies and a broad spectrum of patients are still needed to verify the results of the various studies.
EN
In this paper, we review the use of texture features for cancer detection in Ultrasound (US) images of breast, prostate, thyroid, ovaries and liver for Computer Aided Diagnosis (CAD) systems. This paper shows that texture features are a valuable tool to extract diagnostically relevant information from US images. This information helps practitioners to discriminate normal from abnormal tissues. A drawback of some classes of texture features comes from their sensitivity to both changes in image resolution and grayscale levels. These limitations pose a considerable challenge to CAD systems, because the information content of a specific texture feature depends on the US imaging system and its setup. Our review shows that single classes of texture features are insufficient, if considered alone, to create robust CAD systems, which can help to solve practical problems, such as cancer screening. Therefore, we recommend that the CAD system design involves testing a wide range of texture features along with features obtained with other image processing methods. Having such a compet-itive testing phase helps the designer to select the best feature combination for a particular problem. This approach will lead to practical US based cancer detection systems which deliver real benefits to patients by improving the diagnosis accuracy while reducing health care cost.
EN
As a result of late diagnosis, cancer is the second leading cause of death in most countries in the world. Usually, many cases of cancer are diagnosed at an advanced stage, which reduces the chances of recovery from the disease due to the inability to provide appropriate treatment. The earlier cancer is detected, the more effective the treatment can be, especially for incurable cancers, which can result in a shorter life expectancy due to the rapid spread of the disease. The early detection of cancer also greatly reduces the financial consequences of it, as the cost of treating it in its early stages is much lower than in its other stages. Therefore, several previous studies focus on developing computer-aided cancer diagnosis systems (CACDs) that can detect cancer in its earliest stages automatically. In this paper, a novel approach is proposed for cancer detection. The proposed approach is an end-to-end deep learning approach, where the input images are fed directly to the deep model for final decision. In this research, the accuracy of a new deep convolutional neural network (CNN) for cancer detection is explored. The microscopic medical images obtained from the cancer database were used to evaluate our study, which were labelled as normal and abnormal images. The presented model achieved an accuracy of 99.99%, which is the highest accuracy compared with other deep learning models. Finally, the proposed approach would be very useful and effective, especially in low-income countries where referral systems for patients with suspected cancer are often unavailable, resulting in delayed and fragmented care.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.