W pracy przedstawiono wyniki interpretacji danych magnetotellurycznych we wschodniej części Karpat polskich. Została ona oparta głównie na archiwalnych sondowaniach analogowych wykonanych w latach 1975-1990. Podano również wyniki interpretacji sondowań magnetotellurycznych wykonanych wzdłuż profilu Radoszyce - Przemyśl z wykorzystaniem nowoczesnego systemu pomiarowo-interpretacyjnego MT-1. Syntetycznie omówiono metodykę interpretacji geofizycznej sondowań. Przeanalizowano podstawowe problemy interpretacji geologicznej danych magnetotellurycznych w Karpatach. Wyniki interpretacji odnoszą się przede wszystkim do tektoniki podłoża Karpat fliszowych i przedstawiają obraz jego głównych struktur. Wyróżniono trzy główne strefy podłoża: najbardziej zewnętrzną podłoża platformowego, strefę głęboko pogrążonego podłoża wysokooporowego z miąższym kompleksem niskooporowym powyżej i strefę wyniesioną przy granicy polsko-słowackiej. Ta ostatnia podścielona jest warstwą o bardzo niskiej oporności, stromo zapadającą ku SW i tworzy prawdopodobnie blok wyniesiony na przedpolu strefy subdukcji
EN
The paper presents results of magnetotelluric data interpretation for eastern part of the Polish Carpathians. The interpretation included archive analog data from 1975-1990 as well as recent data acquired with the state-of-art measurement and interpretation system MT-1 along the Radoszyce - Przemyśl line. A method of geophysical interpretation of MT sounding is briefly explained. Basic problems of geological interpretation of MT data from the Carpathians are discussed. Results of magnetotelluric data interpretation are referred to the tectonics of the Flysch Carpathians basement and reflect its main structures. Three zones were distinguished in the basement: the outermost platform zone, the deep-seated high-resistivity basement with a thick low-resistivity complex over it, and the uplifted basement near the Poland-Slovakia border. The latter zone, resting over a low-resistivity layer with NW dip, is most likely a block uplifted in the front of the subduction zone
This paper reviews the tectonic genesis of the Telfer Au-Cu ore system in the Paterson Orogen, NW Australia. Most previous tectonic interpretations have focused on the regional compression-related tectonic processes. These interpretations, however, could neither explain the tectonic deformation nor the distribution of mineralisation. Tectogenetic analysis indicates that the Telfer deposit comprises two overlapping structural domains, both developed as a result of the upward propagation of basement fractures. The first domain represents a local compression-shear-related regime that initiated tectonic deformation and tectonic shortening of the host rock. This regime had a limited role in the mineralising processes. The second, more important regime for mineralisation control, is associated with local shear-extensional tectonic processes. At deposit scale, concurrent development of a normal dip-slip movement along the earlier formed bedding surfaces and the basement propagated steep reverse-slip shearing along NW-SE (S2) trending structures, parallel to the strike of the Paterson Orogen, are the most important tectonic processes of this domain. Bedding surface extensional openings and development of second order structures with N-S (E3) and NW-SE (E2) orientation controlled the tectonic genesis of the majority of orebodies and mineralised zones forming the Telfer ore system.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W zabytkowych strukturach tkanek miejskich i wiejskich pojawia się coraz więcej problemów związanych z potrzebą zabezpieczenia i ratowania zagrożonych dekapitacją różnych elementów budowli. W przypadku Krakowa, w obrębie Starego Miasta takie przykłady są szczególnie wymagające. Składa się na to wiele powodów, np. chronienie bezcennych resztek budownictwa zabytkowego, a szczególnie w sytuacjach struktur zastanych stosowanie takich technologii zabezpieczających, które nie naruszają istniejących zabudów, sąsiadujących z istniejącymi obiektami. Ciekawym przykładem było zabezpieczenie zabytkowego muru klasztornego przy ul. Loretańskiej. Pozornie błahy problem wymusił zastosowanie bardzo skomplikowanych metod zabezpieczających i wzmacniających grożący zawaleniem mur bez naruszania jego układu i struktury.
EN
In the historic rural and urban building structures there appear more and more problems connected with the need to preserve and save various elements of these buildings. In Cracow, especially in the vicinity of the old part of the city, such examples are especially demanding. There is a number of reason for this situation: preserving those priceless remains of historic building, especially in the case of existing structures, using such protecting technologies which would not upset other adjacent historic buildings. An interesting example was preservation of the monastic wall in the Loretańska Street. Seemingly trifling problem required the application of very complicated methods to preserve and strengthen the wall which was threatened with collapse.
In south-eastern Poland and western Ukraine, the Outer Carpathian orogen and the Carpathian Foredeep developed in the foreland of the East-European Platform (Baltica). The area consists of a number of tectonic units included in the Trans-European Suture Zone (TESZ): the Łysogóry–Radom and Małopolska blocks in the territory of Poland, and the Rava Rus’ka Zone, Kokhanivka Zone and Leżajsk Massif in the Ukraine. The development of the TESZ began in the (?Middle) Late Neoproterozoic and was associated with rifting processes taking place along the western edge of the East-European Craton (Baltica) during the break-up of the Rodinia/ Pannotia supercontinent. The passive margin of Baltica evolved into the TESZ during collisional and/or strike-slip movements. In the TESZ (Małopolska Block and Leżajsk Massif), Ediacaran flysch-type siliciclastics were affected by weak metamorphism and folding during the Cadomian orogeny. The development of Cambrian deposits in the East-European Craton, Łysogóry–Radom Block, northeastern part of the Małopolska Block (Kielce Fold Belt) and in the Rava Rus’ka and Kokhanivka zones was associated with the post-rift thermal subsidence. Tectonic movements (so-called Sandomierz phase), which occurred probably due to an oblique collision of the Małopolska Block (included into the passive margin of Baltica) and the East-European Craton during late Middle Cambrian to Late Cambrian (possibly also Early Ordovician) times, resulted in the following: (1) development of stratigraphical (?erosional) gaps in the Middle and Upper Cambrian sections of the Lublin–Podlasie slope of the East-European Craton and the Kielce Fold Belt in the Małopolska Block; (2) intense tectonic subsidence of the Łysogóry–Radom Block during the deposition of Middle and Upper Cambrian sediments; (3) development of compressional folds in the Lower Cambrian to lower Middle Cambrian deposits of the Kielce Fold Belt on the Małopolska Block. Ordovician–Silurian series were deposited in a typical flexural foredeep basin, in which subsidence and deposition rates accelerated during Late Silurian (Ludlow–Pridoli) and Early Devonian (Lochkovian) times. It is postulated that the present position of the Małopolska Block relative to the Łysogóry–Radom Block and East-European Craton resulted from post-Silurian dextral movements between the Małopolska Block and the East-European Craton. Devonian–Carboniferous deposits occur only in the Małopolska Block located in the Variscan foreland. The Middle-Late Devonian and Early Carboniferous shallow-marine carbonate platforms developed under an extensional regime. The siliciclastic Upper Visean–Lower Namurian A Culm series were deposited in the flexural Variscan foreland basin. During the Late Namurian A, the Małopolska Block was uplifted in response to the build-up of compressional foreland stresses. During post-Carboniferous times, the Precambrian and Palaeozoic deposits were subject to erosion and restructuring during the Alpine orogeny.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Przedmiotem artykułu są wyniki reinterpretacji trzech regionalnych profili magnetotellurycznych zlokalizowanych w polskich Karpatach Zachodnich. Badania magnetotelluryczne w tym obszarze wykonało Przedsiębiorstwo Badań Geofizycznych w Warszawie w latach 1997-2002, Prace reinterpretacyjne poprzedzone zostały przez analizę danych pomiarowych i ich reprocessing dla wybranych sondowań. W reinterpretacji wykorzystano głównie automatyczną inwersję 2D oraz inwersję 1D przy użyciu algorytmów Occama i LSQ. Dwuwymiarowe przekroje oporności opracowane na podstawie wyników automatycznej inwersji 2D oraz interpretacji 1D wykorzystano do konstrukcji modeli geoelektryczno-geologicznych. W interpretacji geologicznej wykorzystano także informacje geologiczne i wiertnicze oraz dane sejsmiki refleksyjnej.
EN
The subject of the paper includes results of reinterpretation of three regional magnetotelluric profiles located in the western part of the Polish Carpathians. Magnetotelluric survey in the area was made by the Geophysical Exploration Company, Warsaw, in the years 1997-2002. Reinterpretation works were proceeded by analysis of measurement data and reprocessing for some soundings. Automatic 2D inversion and 1D inversion with the use of Occam and LSQ algorithms were employed in reinterpretation process. 2D resistivity sections obtained based on results of automatic 2D and 1D data interpretation were used to construct geoelectric and geologic models. Geological and borehole data, and reflection seismic data were also applied in geological interpretation.
Posadowienie i realizację robót palowych na budowie najdłuższego obiektu mostowego w Polsce - estakady WE-1 w ciągu Południowej Obwodnicy Gdańska - wykonywano w warunkach gruntowych o odmiennych parametrach niż przyjęto w projekcie posadowienia. Weryfikacja założeń projektowych okazała się słuszna i konieczna. Estakada o długości całkowitej 2778,1 m składa się z dwóch równoległych konstrukcji, opartych na 69 podporach i 136 fundamentach. Fundamenty podpór zaprojektowano i wykonano w technologii żelbetowych pali prefabrykowanych.
The article presents the results of air temperature measurements inside a basement, outside it and in the ground adjacent to the building. The results and their analysis reveal that indoor thermal conditions develop differently in rooms with earth-contact structures. Intermittent heating exerts an important influence on the shaping of temperature conditions in a basement and its vicinity.
Presented paper is a contribution to discussion about the tectonic regionalization in Poland. The Polish Lowlands, located between the Baltic shore and the highlands of the southern and central Poland, is the area discussed here. In this region mainly the Quaternary and the Neogene deposits with thickness rarely over 300 m are exposed. On the sub-Cenozoic surface occur mainly Cretaceous, Jurassic and Triassic rocks. Structural forms of the Polish Lowlands are directly associated with the Permian-Mesozoic Polish Basin inverted at the beginning of Cenozoic time. It is worthwhile indicating here that not only the Polish Trough was inverted but also the distal part of this basin, distinguished now as the Fore-Sudetic Monocline. Subdivision of the Polish Lowlands into tectonic units on the sub-Cenozoic surface was shown on Fig. 1. In the mid-Polish area antyclinorium belts of north-west to south-east orientation are located. The basement of the Polish Basin is built of the pre-Permian deposits, tectonized during pre-Alpine phases. To analyze the geology of Poland in the sub-Permian architecture the proper tectonic map (Fig. 2) is required with only the units of first order marked. Debate on tectonics of Poland requires also a map of basement consolidation units (Fig. 3). Indispensable completion of the presented maps is a geological cross-section of the Polish Lowlands (Fig. 4). It is clear that tectonic regionalization of Poland (with special attention to the Polish Lowlands) should be demonstrated on the three basic maps here presented. Spatial (both horizontal and vertical) relations between tectonic units should be considered in the light of sedimentary basin analysis, i.e., searching processes and stages of the structural evolution which essentially contributed to the recent tectonic diversification in regional geology.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.