Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  artificial intelligence (AI)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of artificial intelligence raises many ethical and legal challenges. The discussion concerns mainly the issues of competition and consumer protection law, personal data protection law, civil liability, contract law, however the key issue, so far neglected in the literature, may be the problem of systemic nature connected with the question of the necessity to regulate AI at the constitutional level. Such a need arises from the recognition of the role that AI will soon play in the state and society. Safeguarding human rights will require the introduction of a fundamental norm that expresses the idea of the superior position of humans over machines (autonomous systems). However, such a seemingly obvious norm, understood literally, is not at all certain when superhuman efficiency (also intellectual) of machines is taken into account. As a consequence, such a norm – derived from human dignity – may stand in unresolvable opposition to the needs of the technological system. The search for a new constitutional model that responds to these challenges should begin today.
EN
Research background: This article discusses how artificial intelligence (AI) is affecting workers' personal and professional lives, because of many technological disruptions driven by the recent pandemic that are redefining global labor markets. Purpose of the article: The objective of this paper is to develop a systematic review of the relevant literature to identify the effects of technological change, especially the adoption of AI in organizations, on employees’ skills (professional dimension) and well-being (personal dimension). Methods: To implement the research scope, the authors relied on Khan's five-step methodology, which included a PRISMA flowchart with embedded keywords for selecting the appropriate quantitative data for the study. Firstly, 639 scientific papers published between March 2020 to March 2023 (the end of the COVID-19 pandemic according to the WHO) from Scopus and Web of Science (WoS) databases were selected. After applying the relevant procedures and techniques, 103 articles were retained, which focused on the professional dimension, while 35 papers were focused on the personal component. Findings & value added: Evidence has been presented highlighting the difficulties associated with the ongoing requirement for upskilling or reskilling as an adaptive reaction to technological changes. The efforts to counterbalance the skill mismatch impacted employees' well-being in the challenging pandemic times. Although the emphasis on digital skills is widely accepted, our investigation shows that the topic is still not properly developed. The paper's most significant contributions are found in a thorough analysis of how AI affects workers' skills and well-being, highlighting the most representative aspects researched by academic literature due to the recent paradigm changes generated by the COVID-19 pandemic and continuous technological disruptions.
EN
Research background: The article explores the integration of Artificial Intelligence (AI) in predictive maintenance (PM) within Industrial Internet of Things (IIoT) context. It addresses the increasing importance of leveraging advanced technologies to enhance maintenance practices in industrial settings. Purpose of the article: The primary objective of the article is to investigate and demonstrate the application of AI-driven PM in the IIoT. The authors aim to shed light on the potential benefits and implications of incorporating AI into maintenance strategies within industrial environments. Methods: The article employs a research methodology focused on the practical implementation of AI algorithms for PM. It involves the analysis of data from sensors and other sources within the IIoT ecosystem to present predictive models. The methods used in the study contribute to understanding the feasibility and effectiveness of AI-driven PM solutions. Findings & value added: The article presents significant findings regarding the impact of AI-driven PM on industrial operations. It discusses how the implementation of AI technologies contributes to increased efficiency. The added value of the research lies in providing insights into the transformative potential of AI within the IIoT for optimizing maintenance practices and improving overall industrial performance.
PL
WPROWADZENIE: W ostatnim czasie obserwuje się wzrost liczby opublikowanych artykułów dotyczących sztucznej inteligencji w dziedzinie medycyny, szczególnie w obszarze neurochirurgii. Badania dotyczące integracji sztucznej inteligencji z praktyką neurochirurgiczną wskazują na postępującą zmianę w kierunku szerszego wykorzystania narzędzi wspomaganych sztuczną inteligencją w diagnostyce, analizie obrazu i podejmowaniu decyzji. MATERIAŁ I METODY: W badaniu oceniono efektywność ChatGPT-3.5 i ChatGPT-4 na Państwowym Egzaminie Specjalizacyjnym (PES) z neurochirurgii przeprowadzonym jesienią 2017 r., który w czasie przeprowadzania badania był najnowszym dostępnym na stronie Centrum Egzaminów Medycznych (CEM) egzaminem z oficjalnie udostępnionymi odpowiedziami. Próg zdawalności egzaminu specjalizacyjnego wynosi 56% poprawnych odpowiedzi. Egzamin składał się ze 116 pytań jednokrotnego wyboru, po wyeliminowaniu czterech z uwagi na ich niezgodność z aktualną wiedzą. Ze względu na poruszane zagadnienia pytania podzielono na dziesięć grup tematycznych. Na potrzeby gromadzenia danych obie wersje ChatGPT zostały poinformowane o zasadach egzaminu i poproszone o ocenę stopnia pewności co do każdej odpowiedzi w skali od 1 (zdecydowanie niepewny) do 5 (zdecydowanie pewny). Wszystkie interakcje odbywały się w języku polskim i były rejestrowane. WYNIKI: ChatGPT-4 wyraźnie przewyższył ChatGPT-3.5 z różnicą wynoszącą 29,4% (p < 0,001). W przeciwieństwie do ChatGPT-3.5, ChatGPT-4 z sukcesem osiągnął próg zdawalności dla PES. W testach ChatGPT-3.5 i ChatGPT-4 odpowiedzi były takie same w 61 pytaniach (52,58%), w obu przypadkach były poprawne w 28 pytaniach (24,14%) i niepoprawne w 33 pytaniach (28,45%). WNIOSKI: ChatGPT-4 osiąga większą poprawność w udzielanych odpowiedziach w porównaniu z ChatGPT-3.5, prawdopodobnie dzięki zaawansowanym algorytmom i szerszemu zbiorowi danych treningowych, co podkreśla lepsze zrozumienie złożonych koncepcji neurochirurgicznych.
EN
INTRODUCTION: In recent times, there has been an increased number of published materials related to artificial intelligence (AI) in both the medical field, and specifically, in the domain of neurosurgery. Studies integrating AI into neurosurgical practice suggest an ongoing shift towards a greater dependence on AI-assisted tools for diagnostics, image analysis, and decision-making. MATERIAL AND METHODS: The study evaluated the performance of ChatGPT-3.5 and ChatGPT-4 on a neurosurgery exam from Autumn 2017, which was the latest exam with officially provided answers on the Medical Examinations Center in Łódź, Poland (Centrum Egzaminów Medycznych – CEM) website. The passing score for the National Specialization Exam (Państwowy Egzamin Specjalizacyjny – PES) in Poland, as administered by CEM, is 56% of the valid questions. This exam, chosen from CEM, comprised 116 single-choice questions after eliminating four outdated questions. These questions were categorized into ten thematic groups based on the subjects they address. For data collection, both ChatGPT versions were briefed on the exam rules and asked to rate their confidence in each answer on a scale from 1 (definitely not sure) to 5 (definitely sure). All the interactions were conducted in Polish and were recorded. RESULTS: ChatGPT-4 significantly outperformed ChatGPT-3.5, showing a notable improvement with a 29.4% margin (p < 0.001). Unlike ChatGPT-3.5, ChatGPT-4 successfully reached the passing threshold for the PES. ChatGPT-3.5 and ChatGPT-4 had the same answers in 61 questions (52.58%), both were correct in 28 questions (24.14%), and were incorrect in 33 questions (28.45%). CONCLUSIONS: ChatGPT-4 shows improved accuracy over ChatGPT-3.5, likely due to advanced algorithms and a broader training dataset, highlighting its better grasp of complex neurosurgical concepts.
5
Content available Tortious Liability for Using Artificial Intelligence
75%
EN
This article discusses the principles of and premises for liability for damage caused by AI systems. It applies to liability models based on the principles of risk and guilt. It indicates that different groups of entities, e.g. programmers, may be responsible for the creation of AI under the principle of guilt, while producers and merchants may put it into circulation under the principle of risk. The liability of AI system users should be tempered and based on the principle of guilt. This article includes a critical view of the AI Act and the relevant directives. It points out that effective liability for damage should be related to the level of harm caused (harm to a person, human death) and not dependent on whether it was inflicted by a high-risk system or any other AI system.
6
Content available remote Budoucnost umělé inteligence: mezi regulací a inovací
63%
EN
Artificial intelligence (AI) is now an indispensable part of everyday life, with applications in computer games, language translation, autonomous vehicles and image recognition. This article focuses on the specifics of AI regulation, analyzes successful and unsuccessful regulations in similar areas, and provides an overview of the most important legislative initiatives. Particular attention is paid to the current AI Act of the European Union, the Executive Order on AI of the US President and the AI Convention of the Council of Europe. The aim is to identify key areas requiring protection and discuss similarities with successful regulations in other areas.
CS
Umělá inteligence (AI) je dnes neodmyslitelnou součástí každodenního života, s aplikacemi v oblasti počítačových her, překladů z cizích jazyků, autonomních vozidel a rozpoznávání obrazu. Tento článek se zaměřuje na specifika regulace AI, analyzuje úspěšné a neúspěšné regulace v podobných oblastech a přináší přehled nejdůležitějších legislativních iniciativ. Zvláštní pozornost je věnována aktuálnímu aktu o AI Evropské unie, Exekutivnímu příkazu o AI prezidenta USA a Úmluvě o AI Rady Evropy. Cílem je identifikovat klíčové oblasti vyžadující ochranu a diskutovat podobnosti s úspěšnými regulacemi v jiných oblastech.
EN
This paper explores the use of machine learning and deep learning artificial intelligence (AI) techniques as a means to integrate multiple sensor modalities into a cohesive approach to navigation for autonomous ships. Considered is the case of a fully autonomous ship capable of making decisions and determining actions by itself without active supervision on the part of onboard crew or remote human operators. These techniques, when combined with advanced sensor capabilities, have been touted as a means to overcome existing technical and human limitations as unmanned and autonomous ships become operational presently and in upcoming years. Promises of the extraordinary capabilities of these technologies that may even exceed those of crewmembers for decision making under comparable conditions must be tempered with realistic expectations as to their ultimate technical potential, their use in the maritime domain, vulnerabilities that may preclude their safe operation; and methods for development, integration and test. The results of research performed by the author in specific applications of machine learning and AI to shipping are presented citing key factors that must be achieved for certification of these technologies as being suitable for their intended purpose. Recommendations are made for strategies to surmount present limitations in the development, evaluation and deployment of intelligent maritime systems that may accommodate future technological advances. Lessons learned that may be applied to improve safety of navigation for conventional shipping are also provided.
PL
Ochrona dziedzictwa kulturowego wymaga negocjacji na wielu szczeblach społecznej organizacji i angażuje osoby reprezentujące bardzo różne środowiska i tym samym - posiadające niejednokrotnie odmienne stanowiska i ideały. Znalezienie mechanizmów wspomagających procesy decyzyjne w obszarze dziedzictwa - w szczególności tego najnowszego - jest jednym z najpilniejszych zadań badawczych w dziedzinie. W artykule zaproponowano strategię i opisano I część badań, które mają prowadzić do stworzenia narzędzia opartego o adekwatny model inteligentnego systemu wspomagania decyzji. Przedstawione zostało uzasadnienie wyboru modelu decyzyjnego (DRSA). Zaproponowano takie przedefiniowanie 2 spośród 10 kryteriów oceny obiektów architektonicznych: kontekstu i tradycji miejsca, aby możliwe było rozdzielenie ich zakresów znaczeniowych i tym samym uniknięcie sytuacji redundancji.
EN
The protection of cultural heritage requires negotiations on many levels of social organization and involves representatives from very different environments and thus - often having different positions and ideals. Finding mechanisms to support decision-making in the area of heritage protection - especially contemporary objects - is one of the most urgent inquiry in the field. The article proposes a strategy and describes the first part of the research: creation of a tool based on an adequate model of an intelligent decision support system. The justification for the choice of the decision model (DRSA) was presented. It has been proposed to redefine 2 out of 10 criteria for assessing architectural objects: the context and place tradition (genis loci), so that it is possible to separate their semantic fields and thus avoid redundancy.
EN
Artificial intelligence (AI) is rapidly transforming communication processes across various sectors, including marketing, education, healthcare, and entertainment. This study explores the theoretical perspectives surrounding AI’s integration into communication, examining how AI-driven tools such as ChatGPT, MidJourney, and Google Gemini are reshaping content creation, personalisation, and human-machine interaction. While AI enhances efficiency and allows for real-time customisation of messages, it also presents ethical challenges related to privacy, data security, and algorithmic bias. By synthesising key academic studies, the study outlines the critical ethical considerations, including the risks of deepfakes and disinformation, and emphasises the need for ethical frameworks to guide responsible AI use. The text also discusses the new digital competencies required to navigate AI-enhanced communication environments, such as AI literacy, data proficiency, and ethical reasoning. Through a systematic literature review, this study contributes to the ongoing discourse on AI’s role in communication by offering a comprehensive theoretical framework that highlights both the opportunities and limitations of AI technologies. Future research should focus on addressing gaps in empirical studies, particularly concerning the long-term impacts of AI on decision-making and the ethical governance of AI-generated content.
EN
As with the powerful digitalization of the world in the 21st century, maritime affairs, like all other areas, are facing not only new opportunities, but also new big challenges and problems. From the point of view of the development of new technologies, it seems that everything is possible, for example the bringing of so-called "intelligent ships" and “smart ports” into one global system on base of internet of things and big data applications. However, if to look at the matter further, a number of factors and obstacles may appear which could be major threats to the normal functioning of such a system. While it is clear that systems with such high degree of complexity are even technically vulnerable, it seems to the author of this paper that questions that are no less difficult are in the field of human relations. For example, when ships and ports are becoming more and more "smarter" and need less and less people to intervene in their interactions, who at the end will be responsible for everything that can and definitely will happened at sea or in the port? What about liability of cargo carrier if “carrier” is an autonomous ship without any person on-board during the entire journey? How to ensure cyber security? How to be secured against the risks of so-called artificial intelligence systemic errors? It is possible that only new non-trivial approaches can lead to acceptable results in this area, but what they may be and whether these approaches are possible at all - these questions are still waiting for answers.
EN
Developments in information technology and artificial intelligence are providing tools that have considerable potential to facilitate and enrich research in the fields of history and related sciences. A prerequisite for their effective use, however, is the most perfect conversion of analogue historical sources into machine-readable form, so that the search, classification and extraction of the information contained in them is as efficient as in born-digital sources. In their study, Kykal and Fišer first provide an overview of the development of digital libraries and the making available of the results of digitization in the Czech Republic, taking into account the different strategies and technological backgrounds of libraries and archives. They reflect on the limitations of full-text search and point out a surprising systemic deficit in current digital libraries, namely the absence of the diagnostics of the quality of machine transcription performed by Optical Character Recognition (OCR) programs. They then pay special attention to presenting the parameters and possibilities of the Digital Reading Room of the Ministry of Defence of the Czech Republic (Digitální studovna Ministerstva obrany ČR, DSMO), which is based on the Kramerius Digital Library system. Thanks to its role as an aggregator of the digitization production of the memory institutions of the Ministry of Defence, the Reading Room makes available both library documents and digitized items from archive collections and museum collections. Using the example of a printed periodical of the Austro-Hungarian Army from the First World War, the process of the additional enhancement of OCR results using the PERO tool (Czech abbreviation for pokročilá extrakce a rozpoznávání obsahu - Advanced Extraction and Recognition of Content) is presented, including enrichment with a metadata scheme which captures the layout of graphic and text objects (Analysed Layout and Text Objects, ALTO) and allows the precise localization of the searched text on the digitized image. Using this program, the textual content of not only printed or typewritten texts, but also handwrit­ten texts, can be retrieved much more efficiently and with noticeably higher quality. Moreover, the data in the ALTO scheme could be used to automatically monitor the quality of OCR results. This procedure would significantly increase the usability of semantic search, machine translation, summarization and many other artificial intelligence tools that are yet to be fully deployed in the Czech Digital Library environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.