This study was motivated by the need to provide more insight into the possible mechanism of the intermolecular interactions between antispasmodic drug drotaverine and one of the serum albumins (BSA), with the aim to indicate the most probable sites of these interactions. For this purpose both experimental (spectrofluorometric titration at various temperatures) and theoretical (molecular mechanics) methods have been applied. The obtained results clearly showed that drotaverine quenched BSA fluorescence, and the most probable mechanism is static quenching. The negative value of the theoretically predicted binding free Gibbs energy (-23.8 kJ/mol) confirmed the existence of the intermolecular interactions involving drotaverine and one tryptophan within BSA protein and was well agreed with the experimentally determined value of -25.2 kJ/mol.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The binding of harmane with human serum albumin (HSA) and bovine serum albumin (BSA) were studied by fluorescence and phosphorescence spectroscopic methods. Quenching of fluorescence of serum albumins by harmane was found to be a static quenching process. The equilibrium constant (K) of complex formation was found to be equal to (5.16±0.28)x104 M-1 and (4.32±0.30)x104 M-1 for HSA and BSA, respectively. It was found that the interactions of harmane with HSA and BSA were also in the excited triplet state. The determined bimolecular constant or triplet state quenching (kqT)of the proteins studied by harmane was (1.15± 0.10)x107 M-1 s-1 and (2.88±0.22)x107 M-1 s-1 for HSA and BSA, respectively. Based on the similar value of K and kqT for HSA and BSA, a possible suggestion is that, most probably, the binding site of harmane is located in the drug site 1 in the subdomain IIa.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.