When an explosive charge is fired, the nature and mass of the explosive are the only parameters of importance usually considered. The shape however, also plays a major role in the effect of an explosive charge. Knowledge of shape effect can be important before the use of the explosive (in order to create a maximum effect with a given mass of explosive), or in post-explosion damage assessment. The shape effect however is only significant within a certain range from the charge. At longer distance, the produced blast wave tends to be spherical. The shock wave parameters studied in this work are the peak overpressure and the first positive impulse. A series of numerical test has been performed in order to determine the range of influence of the charge shape. Different locations of initiation were compared. A hemispherical charge was point detonated at its centre whereas a cylindrical shape was detonated at the centre of an upper or lower plane. Numerical simulations of near field burst were conducted using LS-DYNA software. During numerical tests a pressure fields were determined for different shapes of explosive charges as well as the pressure waveforms at points located 1000 mm from a centre. Additionally, reference pressure history curves from LOAD_BLAST_ENHANCED procedure were calculated.
The main aim of this paper is to present the effective example of coupled experimental and numerical tests. Moreover, a development process of a numerical model of a terrain vehicle suspension system is presented. Experimental tests were carried out on the machine Instron 8802 with an assistance of the high-speed camera Phantom v12. Obtained stress-strain curves were applied into the FE model to estimate material constants for Mooney-Rivlin constitutive rubber model and for numerical failure criterion. Geometry of the tire and other suspension elements were achieved using reverse engineering technology. Due to the fact that a tire is such a complex structure to be represented with numerical methods, it was important to develop a discrete model of tire as much similar to the real one as possible. Consequently, an exact tire cords pattern was implemented into the FE model of the tire, which was obtained by the assistance of a microscope and X-ray device. In the next step, numerical analyses were performed simulating the TNT explosion under the suspension system with a simplified motor-car body. Nonlinear dynamic simulations were carried out using the explicit LS-Dyna code, with central difference scheme with modified the time integration of the equation of motion. In order to simulate the blast wave propagation the Smoothed Particle Hydrodynamics (SPH) method and Arbitrary Lagrangian-Eulerian formulation with Jones Wilkins Lee (JWL) equation defining the explosive material were used. Finally, results from both approaches were compared.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Oscillations of the surface lattice parameter were observed by RHEED during the homoepitaxial growth of (001) CdTe by molecular beam epitaxy (MBE) and atomic layer epitaxy (ALE). The oscillations are associated to a deformation, induced by the surface reconstruction, at the free edges of the small 2D islands formed during the growth. In the same way, a lateral relaxation is measured during the layer by layer "de-growth" of (001) CdTe. Experiments using a CCD X-ray sensitive camera combined with the very bright X-ray beam offered by the European Synchrotron Radiation Facility allowed us to investigate the two layers behaviour of the CdTe surface in real time during the ablation by ion sputtering. The results show a relaxation mechanism, which is effective only whem islands are presented on the surface. A correlation has been found between the size the islands, their distribution, and the surface reconstruction. Particularly, a long-distance correlation between islands along the [1-10] direction has been observed.
The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.
PL
W pracy przedstawiono wybrane aspekty modelowania i symulacji numerycznych odporności struktury cienkościennego kadłuba lotniczego na obciążenia wywołane falą uderzeniową, generowaną przez wewnętrzną detonację ładunku wybuchowego o masie m0. Charakterystyki mechaniczne materiałów przyjęto z pomiarów eksperymentalnych. Zastosowano technikę sprzężenia oddziaływań między strukturą a płynem, Arbitrary Lagrangian-Eulerian, z opcją erozji zniszczonych elementów. Przeanalizowano mechanizmy zniszczenia struktury w zależności od lokalizacji ładunku wybuchowego. Rozpatrzono wpływ różnych parametrów modelu obliczeniowego na wyniki analiz. Zbadano również wpływ wymiarów przestrzeni eulerowskiej na wyniki. Wykazano bardzo silną wrażliwość analizy na przyjęte parametry, wybrane sformułowania elementów (opcje), modele materiałów. Wskazuje to na konieczność korelacji symulacji numerycznych z wynikami eksperymentalnymi. Bez możliwości takich porównań trudno mówić o walidacji modelu obliczeniowego.
We apply a fluid-structure interaction method to simulate prototypical dynamics of the aortic heart-valve. Our method of choice is based on a monolithic coupling scheme for fluid-structure interactions in which the fluid equations are rewritten in the 'arbitrary Lagrangian Eulerian' (ALE) framework. To prevent the backflow of structure waves because of their hyperbolic nature, a damped structure equation is solved on an artificial layer that is used to prolongate the computational domain. The increased computational cost in the presence of the artificial layer is resolved by using local mesh adaption. In particular, heuristic mesh refinement techniques are compared to rigorous goal-oriented mesh adaption with the dual weighted residual (DWR) method. A version of this method is developed for stationary settings. For the nonstationary test cases the indicators are obtained by a heuristic error estimator, which has a good performance for the measurement of wall stresses. The results for prototypical problems demonstrate that heart-valve dynamics can be treated with our proposed concepts and that the DWR method performs best with respect to a certain target functional.
PL
W artykule przedstawiono analizę zagadnienia oddziaływania płyn-struktura (FSI) w komputerowej symulacji pracy zastawki serca. Przedstawiono monolityczne sformułowanie tego zagadnienia, w którym równania dla struktury i płynu rozwiązywane są w pełnym sprzężeniu, przy czym do opisu ruchu płynu stosowane jest podejście typu Arbitrary Lagrangian-Euelerian (ALE). Zaproponowano metodę eliminacji zjawiska niefizycznego odbicia fal odkształceń struktury, polegającą na wprowadzeniu sztucznej dyssypacji energii tych fal w części brzegu obszaru położonej za zastawkami. W celu zwiększenia efektywności obliczeniowej wprowadzono lokalną adaptację siatki. W szczególności, porównano heurystyczne techniki adaptacji siatki z techniką opartą na wykorzystaniu ważonego residuum sprzężonego (Dual Weighted Residual, DWR). Przedstawiono wyniki obliczeń testowych demonstrujące poprawność zaproponowanego podejścia oraz skuteczność metody adaptacyjnej DWR.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.