Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Seismic data in desert area generally have low signal-to-noise ratio (SNR) due to special surface conditions. Desert noise is characterized as low-frequency, non-Gaussian and non-stationary noise, which makes the noise suppression in desert area more challenging by conventional methods. Conventional methods are efective for the signal with high SNR, but in desert seismic signal, the SNR is low and the signal can easily be obliterated in desert noise. In this paper, we propose an approach that operates in synchrosqueezing transform (SST) domain and use classifcation techniques obtained from supervised machine learning to identify the coefcients associated with signal and noise. First of all, we transform the real desert seismic data into time–frequency domain by SST. Secondly, we select features by calculating the SST coefcients of signal and noise. And then, we train them in the Adaboost classifer. Finally, when the training is completed, we can obtain the fnal classifer that can efectively separate the signal from noise. We perform tests on synthetic and feld records, and the results show great advantages in suppressing random noise as well as retaining efective signal amplitude.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.