Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Excess of boron in soil and irrigation water is a serious constrain to crop production in many areas of the World as well as in Turkey. A pot experiment was carried out with to screen safflower cultivars in order to investigate the effects of boron toxicity stress on early growth and ions composition. Three safflower cultivars (Carthamus tinctorius cv. Balci, Yenice, Remzi Bey) were grown in pots containing alkaline and potassium rich soil, additionally supplemented with 0, 4, 8, 16, 32, 64 and 128 mg kg–1 boron. Chlorophyll content of all cultivars decreased with excessive boron levels. Plant height, shoot fresh and dry weight significantly increased at 4 mg kg–1 boron level followed by sharp decline with the other treatments. Boron content of cultivars increased and the highest amount was observed at 128 mg kg–1 boron level. Sodium content of all cultivars gradually increased with increase in B concentration. Whereas, potassium and calcium content reduced with increased B. Phosphorus content of all cultivars were least at 128 mg kg boron level. Results revealed that cv. balci appeared to tolerant to boron in soil up to 32 mg kg–1 and can be recommended for growing and breeding material for boron rich soils of Central Anatolia.
EN
Cotton (Gossypium hirsutum L.) is the most significant cash crop and backbone of global textile industry. The importance of cotton can hardly be over emphasized in the economy of cotton-growing countries as cotton and cotton products contribute significantly to the foreign exchange earnings. Cotton breeders have continuously sought to improve cotton’s quality through conventional breeding in the past centuries; however, due to limited availability of germplasm with resistant to particular insects, pests and diseases, further advancements in cotton breeding have been challenging. The progress in transformation systems in cotton paved the way for the genetic improvement by enabling the researchers to transfer specific genes among the species and to incorporate them in cotton genome. With the development of first genetically engineered cotton plant in 1987, several characteristics such as biotic (insects, viruses, bacteria and fungi) resistance, abiotic (drought, chilling, heat, salt), herbicide tolerance, manipulation of oil and fiber traits have been reported to date. Genetic engineering has emerged as a necessary tool in cotton breeding programs, strengthening classical strategies to improve yield and yield contributing factors. The current review highlights the advances and endeavors in cotton genetic engineering achieved by researchers worldwide utilizing modern biotechnological approaches. Future prospects of the transgenic cotton are also discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.