Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Detection of ischemic stroke lesions plays a vital role in the assessment of stroke treatments such as thrombolytic therapy and embolectomy. Manual detection and quantification of stroke lesions is a time-consuming and cumbersome process. In this paper, we present a novel automatic method to detect acute ischemic stroke lesions from Magnetic Resonance Image (MRI) volumes using textural and unsupervised learned features. The proposed method proficiently exploits the 3D contextual evidence using a patch-based approach, which extracts patches randomly from the input MR volumes. Textural feature extraction (TFE) using Gray Level Co-occurrence Matrix (GLCM) and unsupervised feature learning (UFL) based on k-means clustering approaches are employed independently to extract features from the input patches. These features obtained from the two feature extractors are then given as input to the Random Forest (RF) classifier to discriminate between normal and lesion classes. A hybrid approach based on the combination of TFE using GLCM and UFL based on the k-means clustering is proposed in this work. Hybrid combination approach results in more discriminative feature set compared with the traditional approaches. The proposed method has been evaluated on the Ischemic Stroke Lesion Segmentation (ISLES) 2015 training dataset. The proposed method achieved an overall dice coefficient (DC) of 0.886, precision of 0.979, recall of 0.831 and accuracy of 0.8201. Quantitative measures show that the proposed approach is 28.4%, 27.14%, and 5.19% higher than the existing methods in terms of DC, precision, and recall, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.