Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2002
|
tom Nr 12
450-454
EN
General phosphorus concentration in raw sewage and in sewage treated during starting. Characteristics of the process of re-circulated sewage de-nitrification. De-nitrification nitrogen balance in a pre-de-nitrification chamber. Characteristics of re-circulated sludge and of sludge collected in the reactor.
EN
The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN are localized on the GABAergic interneurons and glutamatergic terminals which modulate the activity of 5-HT DRN projection neurons. The present study was aimed at finding how the 5‑HT7 receptor modulates the GABAergic and glutamatergic synaptic inputs to 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5‑HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist SB 269970, which induced an increase in the levels of 5-HT and its metabolite, 5 hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out from DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5‑HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of a selective 5-HT1A receptor antagonist WAY100635. Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Application of 5-CT induced a concentration-dependent increase in the frequency of sIPSCs and a decrease in sEPSCs frequency in recorded neurons. Blockade of 5‑HT7 receptors caused opposite effects. FINANCIAL SUPPORT: Supported by the grant DEC‑2013/11/B/NZ4/04743, financed by the National Science Center, Poland, and by statutory funds from the Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland.
EN
The amygdala is a part of the limbic system involved in emotional processing, which is highly connected with other areas of the brain. Its basolateral region (BLA) re‑ ceives many inputs, including those from prefrontal cor‑ tex, hippocampus, and thalamus. Moreover, the amygdala receives robust innervation from the raphe nuclei. The last serotonin receptor to be discovered, 5-HT7, is highly expressed in the amygdala, suggesting a possibly strong influence on amygdala function. The 5-HT7 receptor is involved in modulation of many physiological processes, such as learning, pain sensation, and mood regulation. Functions of the 5-HT7 receptor at the cellular and net‑ work level have been studied in the hippocampus, dorsal raphe nuclei, and frontal cortex. However, very little is known about the physiological role of 5-HT7 receptors in the amygdala. Our study aimed to elucidate the effect of 5-HT7 receptor activation on synaptic transmission, elec‑ trophysiological properties, and excitability of neurons in the BLA. Whole-cell patch-clamp recordings were made primarily from principal neurons in the BLA of mice, using acute brain slices(300 μm). Afterrecording a baseline, 5-CT (250 nM) in the presence of WAY 100635 (2 µM), a 5-HT1A receptor antagonist, was bath-applied. Both inhibitory and excitatory synaptic transmission were measured by recording spontaneous (sIPSC/sEPSC), miniature (mIPSC/ mEPSC) or evoked (eEPSC/eIPSC) postsynaptic currents. Moreover, excitability, input resistance, and membrane voltage were measured. Specificity of the observed effects was further investigated using the same experimental protocols with the 5-HT7 antagonist SB269970. Our results show an increase in excitability in fast-spiking interneu‑ rons in the amygdala. Regarding inhibitory transmission, 5-HT7 activation increased the amplitude and frequency of spontaneous, but not miniature, IPSC in the principal cells, which suggests that this effect was network-dependent. These effects were abolished in the presence of the 5-HT7 antagonist SB269970. Our data suggest that 5-HT7 activa‑ tion increases GABAergic synaptic transmission onto BLA principal neurons. This is probably due to increased GABA release from local interneurons, where 5-HT7 receptors may be localized. Together, these results suggest that the 5-HT7 receptor may act as a potent modulator of BLA in‑ hibitory transmission. Supported by National Science Cen‑ tre, grant 2016/21/B/NZ4/03618.
EN
The effects of a repeated treatment with antipsychotic drugs, clozapine and haloperidol, on the modulation of network activity ex vivo by 5-HT receptors were examined in rat frontal cortical slices using extracellular recording. Rats were treated for 21 days with clozapine (30 mg/kg p.o.), or haloperidol (1 mg/kg p.o.). Spontaneous bursting activity was induced in slices prepared 3 days after the last drug administration by perfusion with a medium devoid of Mg2+ ions and with added picrotoxin (30 mM). The application of 2-3 µM 8-OH-DPAT, acting through 5-HT1A receptors, resulted in a reversible decrease of bursting frequency. In the presence of 1 µM DOI, the 5-HT2 agonist, or 5 µM zacopride, the 5-HT4 agonist, bursting frequency increased. Chronic clozapine treatment resulted in an attenuation of the effect of the activation of 5-HT2 receptors, while the effects related to 5-HT1A and 5-HT4 receptor activation were unchanged. Treatment with haloperidol did not influence the reactivity to the activation of any of the three 5-HT receptor subtypes. These data are consistent with earlier findings demonstrating a selective downregulation of 5-HT2A receptors by clozapine and indicate that chronic clozapine selectively attenuates the 5-HT-mediated excitation in neuronal circuitry of the frontal cortex while leaving the 5-HT-mediated inhibition intact.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.