Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Green mining is an essential requirement for the development of the mining industry. Of the operations in mining technology, blasting is one of the operations that signifcantly affect the environment, especially ground vibration. In this paper, four artificial intelligence (AI) models including artificial neural network (ANN), k-nearest neighbor (KNN), support vector machine (SVM), and classification and regression tree (CART) were developed as the advanced computational models for estimating blast-induced ground vibration in a case study of Vietnam. Some empirical techniques were applied and developed to predict ground vibration and compared with the four AI models as well. For this research, 68 events of blasting were collected; 80% of the whole datasets were used to build the mentioned models, and the rest 20% were used for testing/checking the models’ performances. Mean absolute error (MAE), determination coefficient (R2 ), and root-mean-square error (RMSE) were used as the standards to evaluate the quality of the models in this study. The results indicated that the advanced computational models were much better than empirical techniques in estimating blast-induced ground vibration in the present study. The ANN model (2-6-8-6-1) was introduced as the most superior model for predicting ground vibration with an RMSE of 0.508, R2 of 0.981 and MAE of 0.405 on the testing dataset. The SVM, CART, and KNN models provided poorer performance with an RMSE of 1.192, 2.820, 1.878; R2 of 0.886, 0.618, 0.737; and MAE of 0.659, 1.631, 0.762, respectively.
EN
This study aims to take into account the feasibility of three ensemble machine learning algorithms for predicting blast-induced air over-pressure (AOp) in open-pit mine, including gradient boosting machine (GBM), random forest (RF), and Cubist. An empirical technique was also applied to predict AOp and compared with those of the ensemble models. To employ this study, 146 events of blast were investigated with 80% of the total database (approximately 118 blasting events) being used for developing the models, whereas the rest (20%~28 blasts) were used to validate the models’ accuracy. RMSE, MAE, and R2 were used as performance indices for evaluating the reliability of the models. The fndings revealed that the ensemble models yielded more precise accuracy than those of the empirical model. Of the ensemble models, the Cubist model provided better performance than those of RF and GBM models with RMSE, MAE, and R2 of 2.483, 0.976, and 0.956, respectively, whereas the RF and GBM models provided poorer accuracy with an RMSE of 2.579, 2.721; R2 of 0.953, 0.950, and MAE of 1.103, 1.498, respectively. In contrast, the empirical model was interpreted as the poorest model with an RMSE of 4.448, R2 of 0.872, and MAE of 3.719. In addition, other fndings indicated that explosive charge capacity, spacing, stemming, monitoring distance, and air humidity were the most important inputs for the AOp predictive models using artifcial intelligence.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.