Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
CRISPR/Cas jest naturalnym, powszechnie występującym mechanizmem obrony bakterii przed infekcjami fagowymi, rozpoznanym u bakterii fermentacji mlekowej (LAB) w 2007 r. Artykuł omawia strukturę systemu CRISPR/Cas i specyfikę jego działania, polegającą na degradacji wprowadzonego do komórki bakteryjnej DNA faga. System zapobiega namnażaniu i uwalnianiu kolejnych generacji fagów do środowiska. Omówiono również sposób wykorzystania mechanizmu CRISPR/Cas do uzyskiwania przemysłowych wariantów szczepów LAB o zróżnicowanej oporności fagowej. Sterowana modyfikacja oporności fagowej metodami CRISPR/Cas bakterii kwasu mlekowych na potrzeby przemysłu spożywczego nie ma charakteru modyfikacji genetycznej w rozumieniu obowiązujących w tym zakresie przepisów.
EN
CRISPR/Cas is a natural and widely occurring bacteriophage defense system in bacteria. It was recognized in 2007 in Lactic Acid Bacteria (LAB). The article describes the structure of CRISPR/Cas defense system and mechanism of decomposition of the injected phage DNA into the bacterial cell. The phenomenon which prevents the multiplication and release of successive phage generations into the environment is explained in details. The article presents also an application of CRISPR/Cas system for construction of new variant of LAB strains with differentiated resistance to phage infections. Controlled modification of phage resistance of LAB strains with CRISPR/Cas method for food industry is not considered as a genetic modification method within the meaning of the existing rules in this area.
EN
Cellular aggregates observed during growth of Saccharomyces cerevisiae strains derived from various natural environments makes most laboratory techniques optimized for non-aggregating laboratory strains inappropriate. We describe a method to reduce the size and percentage of the aggregates. This is achieved by replacing the native allele of the AMN1 gene with an allele found in the W303 laboratory strain. The reduction in aggregates is consistent across various environments and generations, with no change in maximum population density or strain viability, and only minor changes in maximum growth rate and colony morphology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.