As an important research area of modern manufacturing, tool condition monitoring (TCM) has attracted much attention, especially artificial intelligence (AI)- based TCM method. However, the training samples obtained in practical experiments have the problem of sample missing and sample insufficiency. A numerical simulation- based TCM method is proposed to solve the above problem. First, a numerical model based on Johnson-Cook model is established, and the model parameters are optimized through orthogonal experiment technology, in which the KL divergence and cosine similarity are used as the evaluation indexes. Second, samples under various tool wear categories are obtained by the optimized numerical model above to provide missing samples not present in the practical experiments and expand sample size. The effectiveness of the proposed method is verified by its application in end milling TCM experiments. The results indicate the classification accuracies of four classifiers (SVM, RF, DT, and GRNN) can be improved significantly by the proposed TCM method.
Tool wear condition monitoring (TCM) is essential for milling process to ensure the machining quality, and the long short-term memory network (LSTM) is a good choice for predicting tool wear value. However, the robustness of LSTM- based method is poor when cutting condition changes. A novel method based on data fusion enhanced LSTM is proposed to estimate tool wear value under different cutting conditions. Firstly, vibration time series signal collected from milling process are transformed to feature space through empirical mode decomposition, variational mode decomposition and fourier synchro squeezed transform. And then few feature series are selected by neighborhood component analysis to reduce dimension of the signal features. Finally, these selected feature series are input to train the bidirectional LSTM network and estimate tool wear value. Applications of the proposed method to milling TCM experiments demonstrate it outperforms significantly SVR- based and RNN- based methods under different cutting conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.