Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
To maintain indoor comfort, buildings and the construction sector in general consume 30-40% of the World’s total energy. This is mainly due to air conditioning, ventilation, and heating. The least effective and weakest elements of the building envelope are windows and glazed surfaces. So far, several technological solutions have been designed to reduce heat losses and eliminate excessive heat gains through transparent surfaces. In recent decades, aerogel has attracted attention, mainly known for its excellent thermotechnical properties and transparent structure. As a result, it is considered one of the most promising thermal insulation materials for building applications. This paper provides a comprehensive review of aerogel glazing systems, their properties and future potential in the construction industry (especially in the energy efficiency of buildings).
Rocznik
Tom
Strony
7--14
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Technical University of Kosice, Slovakia
autor
- Technical University of Kosice, Slovakia
autor
- Technical University of Kosice, Slovakia
Bibliografia
- 1.Akhter, F., Soomro, S.A. & Inglezakis, V.J. (2021) Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. Journal of Porous Materials, 28, 1387-1400, ISSN 1573-4854.
- 2.Azum, N., Rub, M.A., Khan, A., Khan, A.A.P. & Asiri, A.M. (2021) Chapter 19 – Aerogel applications and future aspects. In: Khan, A.A.P., Ansari, M.O., Khan, A. & Asiri, A.M. (Eds.) Advances in Aerogel Composites for Environmental Remediation. Elsevier, 357-367, ISBN 978-0-12-820732-1.
- 3.Baetens, R., Jelle, B.P. & Gustavsen, A. (2011) Aerogel insulation for building applications: A stateof- the-art review. Energy and Buildings, 43(4), 761-769, ISSN 0378-7788.
- 4.Baiz, Z.H. & Atakara, C. (2022) The effect of enhancing super insulation Aerogel for future building façades in North of Iraq. Proceedings of the International Conference on Evolving Cities, 13-20.
- 5.Berardi, U. (2015) Development of glazing systems with silica aerogel. Energy Procedia, 78, 394-399, ISSN 1876-6102.
- 6.Berardi, U. (2017) The benefits of using aerogel-enhanced systems in building retrofits. Energy Procedia, 134, 626-635, ISSN 1876-6102.
- 7.Buratti, C. & Moretti, E. (2012) Experimental performance evaluation of aerogel glazing systems. Applied Energy, 97, 430-437, ISSN 0306-2619.
- 8.Buratti, C., Belloni, E., Merli, F., Mastoori, M., Sharifi, S.N. & Pignatta, G. (2021) Analysis of nano silica aerogel based glazing effect on the solar heat gain and cooling load in a school under different climatic conditions. Environmental Sciences Proceedings, 12, 15.
- 9.Buratti, C., Moretti, E., Belloni, E. & Zinzi, M. (2019) Experimental and numerical energy assessment of a monolithic aerogel glazing unit for building applications. Applied Sciences, 9(24), 5473.
- 10.Burchell, M.J., Graham, G. & Kearsley, A. (2006) Cosmic dust collection in aerogel. Annual Review of Earth and Planetary Sciences, 34, 385-418.
- 11.Chen, Y., Xiao, Y., Zheng, S., Liu, Y. & Li, Y. (2018) Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of China. Energy, 163, 1115-1124, ISSN 0360-5442.
- 12.Cotana, F., Pisello, A.L., Moretti, E. & Buratti, C. (2014) Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Building and Environment, 81, 92-102, ISSN 0360-1323.
- 13.Du, A., Zhou, B., Zhang, Z. & Shen, J.A. (2013) Special material or a new state of matter: A review and reconsideration of the aerogel. Materials, 6, 941-968.
- 14.Fiorini, C.V., Merli, F., Belloni, E., Anderson, A.M., Carroll, M.K. & Buratti, C. (2023) Glazing systems with thin monolithic aerogel: Optical, thermal, and color rendering performance. Energy and Buildings, 288, 113009, ISSN 0378-778.
- 15.Gao, T., Ihara, T., Grynning, S., Jelle, B.P. & Lien, A.G. (2016) Perspective of aerogel glazings in energy efficient buildings. Building and Environment, 95, 405-413, ISSN 0360-1323.
- 16.Ghoshal, S. & Neogi, S. (2014) Advance glazing system – energy efficiency approach for buildings a review. Energy Procedia, 54, 352-358, ISSN 1876-6102.
- 17. Guinoa, A.S., Zambrana-Vasquez, D., Alcalde, A., Corradini, M. & Zabalza-Bribián, I. (2017) Environmental assessment of a nano-technological aerogel-based panel for building insulation. Journal of Cleaner Production, 161, 1404-1415, ISSN 0959-6526.
- 18. Hegazy, I.R. (2019) Toward energy-efficient governmental buildings in Egypt: investigating the impact of nano aerogel glazing on energ 15(1), 17-24, ISSN 1748-1317.
- 19. Hrubesh, L.W. (1998) Aerogel applications. Journal of Non-Crystalline Solids, 225, 335-342, ISSN 0022-3093.
- 20. Klassen, F. (2023) Material Innovations: Transparent, lightweight, malleable & responsive. Toronto Metropolitan University.
- 21. Leung, C.K., Lu, L., Liu, Y., Cheng, H.S. & Tse, J.H. (2020) Optical and thermal performance analysis of aerogel glazing technology in a commercial building of Hong Kong. Energy and Built Environment, 1(2), 215-223, ISSN 2666-1233.
- 22. Meliță, L. & Croitoru, C. (2019) Aerogel, a high performance material for thermal insulation -A brief overview of the building applications. E3S Web Conf., (111) 06069.
- 23. Mohamed, A.F., Gomaa, M.M., Amir, A.A. & Ragab, A. (2023) Energy, thermal, and economic benefits of aerogel glazing systems for educational buildings in hot arid climates. Sustainability, 15(8), 6332.
- 24. Mohammad, A.K. & Ghosh, A. (2023) Exploring energy consumption for less energy-hungry building in UK using advanced aerogel window. Solar Energy, 253, 389-400, ISSN 0038-092X.
- 25. Pajonk, G.M., Elaloui, E., Chevalier, B. & Begag, R. (1997) Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes. Journal of Non-Crystalline Solids, 210, 2-3, 224-231, ISSN 0022-3093.
- 26. Riffat, S.B. & Qiu, G. (2013) A review of state-of-the-art aerogel applications in buildings. International Journal of Low-Carbon Technologies, 8(1), 1-6.
- 27. Thapliyal, P.C. & Singh, K. (2014) Aerogels as promising thermal insulating materials: An overview. Journal of Materials, 2014, 127049.
- 28. Thie, C., Quallen, S., Ibrahim, A., Xing, T. & Johnson, B. (2023) Study of energy saving using silica aerogel insulation in a residential building. Gels, 9, 86.
- 29. Valachova, D., Zdrazilova, N., Panovec, V. & Skotnicova, I. (2018) Using of aerogel to improve thermal insulating properties of windows. Civil and Environmental Engineering, 14(1), 2-11.
- 30. Wang, H., Wu, H., Ding, Y., Feng, J. & Wang, S. (2015) Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates. International Journal of Low-Carbon Technologies, 10(4), 412-419.
- 31. Zhou, Y. & Zheng, S. (2020a) Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization. Renewable Energy, 153, 375-391, ISSN 0960-1481.
- 32. Zhou, Y. & Zheng, S. (2020b) Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm. Renewable Energy, 155, 810-826, ISSN 0960-1481.
- 33. Zhou, Y. (2021) Artificial neural network-based smart aerogel glazing in low-energy buildings: A state-of-the-art review. iScience, 24(12), 103420, ISSN 2589-0042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2718a9ef-a37f-4dc5-8069-b9479bb8c47a