Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, no. 2 | 339--349
Tytuł artykułu

Evaluation of filters over different stimulation models in evoked potentials

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Filtering is a key process which removes unwanted parts of signals. During signal recording, various forms of noises distort data. Physiological signals are highly noise sensitive and to evaluate them powerful filtering approaches must be applied. The aim of this study is to compare modern filtering approaches on scalp signals. Brain activities were generally examined by brain signals like EEG and evoked potentials (EP). In this study, data were recorded from university students whose age between 18 and 25 years with visual and auditory stimuli. Discrete wavelet transforms, singular spectrum analysis, empirical mode decomposition and discrete Fourier transform based filters were used and compared with raw data on classification performance. Higuchi fractal dimension and entropy features were extracted from EEG; P300 features were extracted from EP signals. Classification was applied with support vector machines. All filtered data gave better scores than raw data. Empirical mode decomposition (EMD) and Fourier-based filter yielded lower results than the discrete wavelet-based filter. Singular spectrum analysis gave the best result at 84.32%. The current study suggests that singular spectrum analysis removes noise from sensitive physiological signals, and EMD requires new mode selection procedures before resynthesizing.
Wydawca

Rocznik
Strony
339--349
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • [1] Kuniecki M, Pilarczyk J, Wichary S. The color red attracts attention in an emotional context: an ERP study. Front Hum Neurosci 2015;9(April):212.
  • [2] Hori J, Okada N. Classification of tactile event-related potential elicited by Braille display for brain–computer interface. Biocybern Biomed Eng 2017;37(1):135–42.
  • [3] Sridhar C, Bhat S, Acharya UR, Adeli H, Bairy GM. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Comput Biol Med 2017;88 (May):93–9.
  • [4] Dinteren R, Arns M, Jongsma MLA, Kessels RPC. P300 development across the lifespan: a systematic review and meta-analysis. PLOS ONE 2014;9(2).
  • [5] Ouyang G, Hildebrandt A, Sommer W, Zhou C. Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: a review and comparative evaluation of methods. Neurosci Biobehav Rev 2017;75:1–21.
  • [6] Wilaiprasitporn T, Yagi T. Motion-modulated and complexity-modulated attention effects on visual evoked potential P300: applications for P300-based brain–computer interfaces. IEE J Trans Electron Inf Syst 2015;135(7):826–31.
  • [7] Ikeda K. Binaural interaction in human auditory brainstem response compared for tone-pips and rectangular clicks under conditions of auditory and visual attention. Hear Res 2015;325:27–34.
  • [8] Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. Neuroimage 2017;147(September):934–51.
  • [9] Heeren A, Billieux J, Philippot P, De Raedt R, Baeken C, de Timary P, et al. Impact of transcranial direct current stimulation on attentional bias for threat: a proof-of-concept study among individuals with social anxiety disorder. Soc Cogn Affect Neurosci 2017;12(2):251–60.
  • [10] Molaee-Ardekani B, Márquez-Ruiz J, Merlet I, Leal- Campanario R, Gruart A, Sánchez-Campusano R, et al. Effects of transcranial direct current stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul 2013;6(1):25–39.
  • [11] Roberts K, Papadaki A, Gonçalves C, Tighe M, Atherton D, Shenoy R, et al. Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain. BMC Anesthesiol 2008;8:1–12.
  • [12] Höffken O, Özgül ÖS, Enax-Krumova EK, Tegenthoff M, Maier C. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation. BMC Neurol 2017;17(1):1–11.
  • [13] Mesbah S, Angeli CA, Keynton RS, El-Baz A, Harkema SJ. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury. PLOS ONE 2017;12(10):1–21.
  • [14] Molina GG, Mihajlovic V. Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application. Biomed Tech Eng 2010;55(3):173–82.
  • [15] Burgess AP, Gruzelier JH. Short duration power changes in the EEG during recognition memory for words and faces. Psychophysiology 2000;37(5):596–606.
  • [16] Vedel-Larsen E, Fuglø J, Channir F, Thomsen CE, Sørensen HBD. A comparative study between a simplified kalman filter and sliding window averaging for single trial dynamical estimation of event-related potentials. Comput Methods Programs Biomed 2010;99(3):252–60. Integrative Medicine Research, 39 (2019) 339-349. doi:10.1016/j.bbe.2018.08.007.
  • 17] Zhang Y, Zhao Q, Jing J, Wang X, Cichocki A. A novel BCI based on ERP components sensitive to configural processing of human faces. J Neural Eng 2012;9(2):026018.
  • [18] Dmochowski JP, Greaves AS, Norcia AM. Maximally reliable spatial filtering of steady state visual evoked potentials. Neuroimage 2015;109:63–72.
  • [19] Spinnato J, Roubaud M-C, Burle B, Torrésani B. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification. J Neural Eng 2015;12(3):036013.
  • [20] Li X, Yao X, Fox J, Jefferys JG. Interaction dynamics of neuronal oscillations analysed using wavelet transforms. J Neurosci Methods 2007;160(1):178–85.
  • [21] Kouchaki S, Sanei S, Arbon EL, Dijk D-J. Tensor based singular spectrum analysis for automatic scoring of sleep EEG. IEEE Trans Neural Syst Rehabil Eng 2015;23(1):1–9.
  • [22] Kortelainen J, Väyrynen E, Huuskonen U, Laurila J. Using Hilbert–Huang transform to assess EEG slow wave activity during anesthesia in post-cardiac arrest patients; 2016;1850–3.
  • [23] Mariani S, Borges AF, Henriques T, Thomas RJ, Leistedt SJ, Linkowski P, et al. Analysis of the sleep EEG in the complexity domain. Conf Proc IEEE Eng Med Biol Soc 2016;6429–32.
  • [24] Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 2015;38(1):139–49.
  • [25] Li X, Jefferys JGR, Fox J, Yao X. Neuronal population oscillations of rat hippocampus during epileptic seizures. Neural Netw 2008;21(8):1105–11.
  • [26] Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, et al. EEG entropy measures in anesthesia. Front Comput Neurosci 2015;9(February):1–17.
  • [27] Cong F, Ristaniemi T, Lyytinen H. Advanced signal processing on brain event-related potentials; 2015.
  • [28] Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K. EMD based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 2015;99:1.
  • [29] Prakash A, Roy V. An automatic detection of sleep using different statistical parameters of single channel EEG signals. Int J Signal Process Image Process Pattern Recognit 2016;9(11):335–44.
  • [30] Shanir PPM, Khan KA, Khan YU, Farooq O, Adeli H. Automatic seizure detection based on morphological features using one-dimensional local binary pattern on long-term EEG. Clin EEG Neurosci 2017. 155005941774489.
  • [31] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain– computer interfaces. J Neural Eng 2007;4(2):R1–3.
  • [32] Wittevrongel B, Van Wolputte E, Van Hulle MM. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding. Sci Rep 2017;7(1):1–10.
  • [33] Akiyama M, Tero A, Kawasaki M, Nishiura Y, Yamaguchi Y. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory. Sci Rep 2017;7(March):42776.
  • [34] Güven A, Altinkaynak M, Dolu N, Ünlühizarci K. Advanced analysis of auditory evoked potentials in hyperthyroid patients: the effect of filtering. J Med Syst 2015;39(2):13.
  • [35] Kesić S, Spasić SZ. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: a review. Comput Methods Programs Biomed 2016;133:55–70.
  • [36] Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector classification. BJU Int 2008;101(1):1396–400. Integrative Medicine Research, 39 (2019) 339-349. doi:10.1016/j.bbe.2018.08.007.
  • [37] Haghighi M, Moghadamfalahi M, Akcakaya M, Shinn- Cunningham BG, Erdogmus D. A graphical model for online auditory scene modulation using EEG evidence for attention. IEEE Trans Neural Syst Rehabil Eng 2017;25 (11):1970–7. Integrative Medicine Research, 39 (2019) 339-349. doi:10.1016/j.bbe.2018.08.007.
  • [38] Jin J, Zhang H, Daly I, Wang X, Cichocki A. An improved P300 pattern in BCI to catch user's attention. J Neural Eng 2017;14(3).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-872a5a17-bdbf-44e8-bd3b-99e7025db310
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.