Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e69, 2023
Tytuł artykułu

Seismic performance of concrete columns confined by high‑strength stirrups

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concrete columns confined by high-strength stirrups exhibited higher bearing capacity and better deformation ability. Based on the test results of concrete columns confined by high-strength stirrups under lateral cyclic loading, it is found that stirrup yield strength could not be used directly in calculating bearing capacity, because the high-strength stirrup could not yield at the peak point. Moreover, according to the seismic performance of a total of 49 sets of confined concrete columns from this paper and other 5 research papers, an easy-to-use model of skeleton curve is proposed by using a set of empirical equations to calculate the characteristic points of skeleton curve. Furthermore, based on the proposed model of skeleton curve, hysteretic rules are developed for the unloading and reloading stages by providing calculating formula of unloading stiffness and ignoring the effect of strength degradation. Finally, the proposed model of skeleton curve and hysteretic rules are verified and evaluated by comparing the calculated curves and experimental curves.
Wydawca

Rocznik
Strony
art. no. e69, 2023
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, hitZhengWZ@163.com
autor
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
autor
  • School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • 1. Han B, Shin S, Bahn B. A model of confined concrete in high-strength reinforced concrete tied columns. Mag Concr Res. 2003;55(3):203-14.
  • 2. Li YZ, Cao SY, Jing DH. Concrete columns reinforced with high-strength steel subjected to reversed cycle loading. ACI Struct J. 2018;115(4):1037-48.
  • 3. Su JS, Wang JJ, Bai ZZ, et al. Influence of reinforcement buckling on the seismic performance of reinforced concrete columns. Eng Struct. 2015;103:174-88.
  • 4. Rautenberg JM, Pujol S, Tavallali H, et al. Drift capacity of concrete columns reinforced with high-strength steel. ACI Struct J. 2013;110(2):307-17.
  • 5. ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. American Concrete Institute, Farmington Hills, 2019.
  • 6. NZS3101. Concrete Structures Standard Part 1—The Design of Concrete Structures. Standard Association of New Zealand, Wellington, New Zealand, 2006.
  • 7. GB50010-2010. Code for Design of Concrete Structures. China Architecture & Building Press, Beijing, China, 2011 (in Chinese).
  • 8. Zhang JW, Cai RX, Li C, Liu X. Seismic behavior of high-strength concrete columns reinforced with high-strength steel bars. Eng Struct. 2020;218: 110861.
  • 9. He SF, Deng ZC. Seismic behavior of ultra-high performance concrete short columns confined with high-strength reinforcement. KSCE J Civ Eng. 2019;23(12):5183-93.
  • 10. Hou CC, Zheng WZ, Li S, Wu XH. Experimental investigation of full-scale concrete columns confined by high-strength transverse reinforcement subjected to lateral cyclic loading. Arch Civ Mech Eng. 2020;20:115.
  • 11. Yi WJ, Zhou Y, Liu Y, Liu LW. Experimental investigation of circular reinforced concrete columns under different loading histories. J Earthquake Eng. 2016;20(4):654-75.
  • 12. Ni XY, Zhang Q, Li YZ. Cyclic test and numerical analysis of the seismic performance of concrete columns reinforced by HRB600 steel bars. J Building Eng. 2022;50:1104211.
  • 13. Saatcioglu M, Baingo D. Circular high-strength concrete columns under simulated seismic loading. J Struct Eng. 1999;125(3):272-80.
  • 14. Paultre P, Legeron F, Mongeau D. Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns. ACI Struct J. 2001;98(4):490-501.
  • 15. Lee JM, Kim YS, Kim SW, Park JH, Kim KH. Structural performance of rectangular section confined by squared spiral with no longitudinal bars influencing the confinement, Archives of Civil and Mechanical. Engineering. 2016;16:795-814.
  • 16. He SF, Deng ZC, Yao JS. Seismic behavior of ultra-high performance concrete long columns reinforced with high-strength steel. J Build Eng. 2020;32: 101740.
  • 17. Wang Z, Wang JQ, Zhu JZ, Zhang J. A simplified method to assess seismic behavior of reinforced concrete columns. Struct Concr. 2020;21:151-68.
  • 18. Erkan B, Halil S. Cyclic shear displacement model for reinforced concrete column. Eng Struct. 2021;247: 113211.
  • 19. Sun CZ, Miao CQ, Li AQ, et al. Correction for seismic damage index model of concrete column with 630 MPa high strength steel bar. Earthq Eng Eng Dyn. 2020;40(1):121-32.
  • 20. CEB-FIB Bulletin 66, Mode Code Final Draft-Volume 2, Federation Internationale du Beton, Lausanne, Switzerland, 2010.
  • 21. GB/T228.1-2010, “Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature,” Standards Press of China, Beijing, China, 2011, 61pp. (in Chiness)
  • 22. JGJ/T 101-2015, “Specification for seismic test of buildings”, China Building Industry Press, Beijing, China, 2015. (in Chinese).
  • 23. Xu SC, Wu CQ, Liu ZX, et al. Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns. Eng Struct. 2017;152:129-48.
  • 24. Yeh YK, Mo YL, Yang CY. Seismic performance of rectangular hollow bridge columns. J Struct Eng. 2002;128(1):60-8.
  • 25. Thomsen JH, Wallace JW. Lateral load behavior of reinforced concrete columns constructed using high-strength materials. ACI Struct J. 1994;94(5):605-15.
  • 26. Hwang SK, Yun HD, Park WS, Han BC. Seismic performance of high-strength concrete columns. Mag Concr Res. 2005;57(5):247-60.
  • 27. Xiao JZ, Zhang CH. Seismic behavior of RC columns with circular, square and diamond sections. Constr Build Mater. 2008;22:801-10.
  • 28. Xue JY, Zhang X, Ke XJ, Ma LL. Seismic resistance capacity of steel reinforced high-strength concrete columns with rectangular spiral stirrups. Constr Build Mater. 2019;229: 116880.
  • 29. Yang K, Shi QX, Qi L. Seismic performance and confinement reinforcement design of high-strength concrete columns confined with high-strength stirrups. Adv Struct Eng. 2021;24(10):2061-75.
  • 30. Shi QX, Ma LC, Wang QW, Wang B, Yang K. Seismic performance of square concrete columns reinforced with grade 600 MPa longitudinal and transverse reinforcement steel under high axial load. Structures. 2021;32:1955-70.
  • 31. Bicici E, Sezen H. Cyclic shear displacement model for reinforced concrete columns. Eng Struct. 2021;247: 113211.
  • 32. He Z. Nonlinear analysis and the seismic damage performance design and control of reinforced concrete structure. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, China; 2000.
  • 33. Su JS, Wang JJ, Li ZX, Liang X. Effect of reinforcement grade and concrete strength on seismic performance of reinforced concrete bridge piers. Eng Struct. 2019;198: 109512.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ed6648e3-4362-48ce-ba82-8672fa59706a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.