Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, no. 5 | 1--14
Tytuł artykułu

Footwear for Diabetics – Structural and Material Elements for the Prevention and Alleviation of Foot Lessions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diabetic foot syndrome is a syndrome of specific conditions affecting the foot. It is a complication of diabetes. It occurs in 12-25% of patients with diabetes. Untreated, it leads to irreversible deformities and necrosis of the foot, often resulting in amputation. In this study the statistics and consequences of diabetic foot syndrome are described. Patients with diabetes need to take care of their lower limbs. Proper footwear can prevent foot wounds. Available solutions for the prevention and treatment of diabetic foot syndrome are presented herein: footwear, insoles and requirements for footwear materials. Appropriate equipment for a person with diabetes, especially one who has been diagnosed with diabetic foot syndrome or is at risk of such a condition, includes footwear and replaceable insoles. The parameters of footwear, insoles and footwear materials that are most optimal for patients with diabetes and diabetic foot syndrome were defined. The effect of a pulsed electromagnetic field and pulsed ultrasound on diabetic foot problems was evaluated.
Wydawca

Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 74 poz., rys.
Twórcy
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland
  • Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 16 Stefanowskiego Street, 90-537 Lodz, Poland, Interdisciplinary Doctoral School
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland
  • Łukasiewicz Research Network – Lodz Institute of Technology, 19/27 Maria Sklodowska-Curie Street, 90-570 Lodz, Poland, andrzej.rostocki@lit.lukasiewicz.gov.pl
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Chemical Engineering, 116 Zeromskiego Street, 90-924 Lodz, Poland, Interdisciplinary Doctoral School
Bibliografia
  • 1. Oubré A., Carlson T., King S., Reaven G., From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia, 1997, 40 (5), 614-617. DOI: 10.1007/s001250050724
  • 2. Marwood S., Diabetes mellitus – some reflections. The Journal of the Royal College of General Practitioners, 1973, 23 (126), 38–45.
  • 3. Gemmill C.L., The Greek concept of diabetes. Bulletin of the New York Academy of Medicine, 1972, 48 (8), 1033–6.
  • 4. Barczak C.A., Barnett R. I., Childs E. J., Bosley L. M., Fourth national pressure ulcer prevalence survey. Advances in Wound Care, 1997, 10 (4), 18-26.
  • 5. Magliano D. J., Boyko E. J., IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS. (10th ed.), 2021. International Diabetes Federation.
  • 6. Topor-Madry R., Wojtyniak B., Strojek K., Rutkowski D., Bogusławski S., Ignaszewska-Wyrzykowska A., JaroszChobot P., Czech M., Kozierkiewicz A., Chlebus K., Jędrzejczyk T., Mysliwiec M., Polanska J., Wysocki M. J., Zdrojewski T., Prevalence of diabetes in Poland: a combined analysis of national databases. Diabetic medicine : a journal of the British Diabetic Association, 2019, 36 (10), 1209–1216. DOI: 10.1111/ dme.13949
  • 7. Karnafel W., Prevention of diabetic foot syndrome (I ed.), (in polish), Medyk, 2012, Warszawa.
  • 8. Singh N., Armstrong D. G., Lipsky B. A., Preventing foot ulcers in patients with diabetes. The Journal of the American Medical Association, 2005, 12, 293 (2), 217-28. DOI: 10.1001/jama.293.2.217
  • 9. Edmonds M., The current burden of diabetic foot disease. Journal of Clinical Orthopaedics and Trauma, 2021, 8 (17), 88-93. DOI: 10.1016/j.jcot.2021.01.017
  • 10. Korzon-Burakowska A., Diabetic foot syndrome – pathogenesis and practical aspects of management (in polish). Forum Medycyny Rodzinnej, 2008, 2 (3), 234-241.
  • 11. Lavery L. A., van Houtum W. H., Ashry H. R., Armstrong D. G., Pugh J. A., Diabetes-related lower-extremity amputations disproportionately affect Blacks and Mexican Americans. Southern Medical Journal, 1999, 92 (6), 593-599.
  • 12. Siitonen O. I., Niskanen L. K., Laakso M., Siitonen J. T., Pyörälä K., Lower-extremity amputations in diabetic and nondiabetic patients. A population-based study in eastern Finland. Diabetes Care, 1993, 16 (1), 16–20. DOI: 10.2337/diacare.16.1.16
  • 13. Tanenberg R. T., Schumer M., P., Greene Douglas A., Neuropathic problems of the lower extremities in diabetic patient. In: Bowker J. H., Pfeifer M. A. (Ed.). Levin and Oneal’s The diabetic foot (VI ed.), 2001, Mosby (St. Louis). DOI: 10.1016/ B978-0-323-04145-4.50010-7
  • 14. Au E., Goonetilleke R., Witana Ch., Xiong S., A methodology for determining the allowances for fitting footwear. International Journal of Human Factors Modelling and Simulation, 2011, 2 (4), 341 – 366. DOI: 10.1504/ IJHFMS.2011.045003
  • 15. Rajchel-Chyla B., Skrzyńska B., Janocha M., Gajewski R., The foot length changes due to age as well as load during ambulation and determination of the toe allowance (in polish) Przegląd Włókienniczy– Włókno Odzież Skóra, 2012, 3, 23-26.
  • 16. Brodtkorb T. H., Kogler G. F., Arndt A., The influence of metatarsal support height and longitudinal axis position on plantar foot loading. Clinical Biomechanics, 2008, 23 (5), 640-647. DOI: 10.1016/j.clinbiomech.2007.09.019
  • 17. Campbell G., Newell E., McLure M., Compression testing of foamed plastics and rubbers for use as orthotic show insoles. Prosthetics and Orthotics International, 1982, 6 (1), 48–52.
  • 18. Soulier S. M., The use of running shoes in the prevention of plantar diabetic ulcers. Journal of the American Podiatric Medical Association, 1986, 76 (7), 395–400.
  • 19. Jarl G., Tranberg R., Johansson U., Lundqvist L-O., Predictors of adherence to wearing therapeutic footwear among people with diabetes. Journal of foot and ankle research, 2020, 13 (45), 1-9. DOI: 10.1186/s13047-020-00413-z
  • 20. Brand P.W., Coleman W.C., The diabetic foot. In: Rifkin, H., Porte, D Jr. (eds), Ellenberg and Rifkin’s Diabetes Mellitus: Theory and Practice, 4th ed. New York: Elsevier Science, 1990, 792–811. DOI: 10.1007/978-3-642-34746-7_150
  • 21. Malki A., Effects of rocker profiles and self-adapting insoles on plantar pressure in patients with diabetes mellitus with loss of protective sensation. Gait and Posture, 2022, 97 (1), 111-112. DOI: 10.1016/j.gaitpost.2022.07.077
  • 22. Bus S. A., Waaijman R., Arts M., De Haart M., Busch-Westbroek T., Van Baal J., Nollet F., Effect of custom-made footwear on foot ulcer recurrence in diabetes: a multicenter randomized controlled trial. Diabetes Care, 2013, 36, 4109. DOI: 10.2337/dc13-0996
  • 23. Lewis G., A Health Upgrade for Patients with Diabetes: Implementing An Improved Diabetic Protocol in Primary Care. Available at SSRN: https://ssrn.com/abstract=4780705 or http://dx.doi.org/10.2139/ssrn.4780705, 2024
  • 24. Dahmen R., Haspels R., Koomen B., Hoeksma A. F., Therapeutic Footwear for the Neuropathic Foot: An algorithm. Diabetes Care, 2001, 24 (4), 705–709. DOI: 10.2337/diacare.24.4.705
  • 25. Van Deursen R., Footwear for the neuropathic patient: offloading and stability. Diabetes/Metabolism Research and Reviews, 2008, 24 (S1), 96-100. DOI: 10.1002/dmrr.827
  • 26. Bus S. A., Zwaferink J. B., Dahmen R., Busch-Westbroek T., State of the art design protocol for custom made footwear for people with diabetes and peripheral neuropathy. Diabetes/Metabolism Research and Reviews, 2020, 36, e3237. DOI: 10.1002/dmrr.3237
  • 27. Paton J. S., Roberts A., Bruce G. K., Marsden J., Does footwear affect balance?: the views and experiences of people with diabetes and neuropathy who have fallen. Journal of the American Podiatric Medical Association, 2013, 103 (6), 508-515.
  • 28. Razak A. H., Zayegh A., Begg R. K., Wahab Y., Foot Plantar Pressure Measurement System: A Review. Sensors, 2012, 12 (7), 9884-9912. DOI: 10.3390/s120709884
  • 29. Rogers K., Otter S., Birch I., The effect of PORON® and Plastazote® insoles on forefoot plantar pressures. British Journal of Podiatry, 2006, 9 (4), 111-114.
  • 30. Viswanathan V., Madhavan S., Gnanasundaram S., Gopalakrishna G., Das B. N., Rajasekar S., Ramachandran A., Effectiveness of Different Types of Footwear Insoles for the Diabetic Neuropathic Foot: A follow-up study. Diabetes Care, 2004, 27 (2), 474–477. DOI: 10.2337/diacare.27.2.474
  • 31. Wang CC., Yang CH., Wang C.S., Xu D., Huang B.S., Artificial neural networks in the selection of shoe lasts for people with mild diabetes. Medical Engineering & Physics, 2019, 64, 37-45. DOI: 10.1016/j.medengphy.2018.12.014
  • 32. Nichols D. P., Caceres S., Caverly L., Fratelli C., Kim S. H., Malcolm K., Poch K. R., Saavedra M., Solomon G., TaylorCousar J., Moskowitz S., Nick J.A., Effects of azithromycin in Pseudomonas aeruginosa burn wound infection. Journal of Surgical Research, 2013, 183 (2), 767- 776. DOI: 10.1016/j.jss.2013.02.003
  • 33. Román L. E., Gomez E. D., Solís J. L., Gómez M. M., Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules, 2020, 25, 5802. DOI: 10.3390/molecules25245802
  • 34. Sen N., Nanofillers in the Antibacterial and Antifungal Coating Material. In: Mallakpour, S., Hussain, C.M. (eds) Handbook of Nanofillers. Springer, 2024, Singapore. DOI: 10.1007/978-981-99- 3516-1_106-1
  • 35. Carvalho I., Ferdov S., Mansilla C., Marques S. M., Cerqueira M. A., Pastrana L. M., Henriques M., Gaidau C., Ferreira P., Carvalho S., Development of antimicrobial leather modified with Ag– TiO2 nanoparticles for footwear industry. Science and Technology of Materials, 2018, 30, Supplement 1, 60-68. DOI: 10.1016/j.stmat.2018.09.002
  • 36. Sanders D., Grunden A., Dunn R. R., A review of clothing microbiology: the history of clothing and the role of microbes in textiles. Biology Letters, 2021, 17:20200700. DOI: 10.1098/rsbl.2020.0700
  • 37. Chien, H-W., et al. (2020). Stable N-halamine on polydopamine coating for high antimicrobial efficiency. European Polymer Journal, 130:109654. DOI: 10.1016/j.eurpolymj.2020.109654
  • 38. Zhao T., Chen Q., Halogenated phenols and polybiguanides as antimicrobial textile finishes. In: Antimicrobial Textiles. Elsevier, 2016, 141–153. DOI: 10.1016/ B978-0-08-100576-7.00009-2
  • 39. Li S., Lin X., Liu Y., Li R., Ren X., Huang T.H., Phosphorus-nitrogen-siliconbased assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose, 2019, 26, 4213–4223. DOI: 10.1007/s10570-019-02373-5
  • 40. Saraswati M., Permadani R. L., Slamet A., The innovation of antimicrobial and selfcleaning using Ag/TiO2 nanocomposite coated on cotton fabric for footwear application. In IOP Conference Series: Materials Science and Engineering, 2019, 509, 1, 012091. DOI: 10.1088/1757- 899X/509/1/012091
  • 41. Ma J., Zhang X., Bao Y., Liu J., A facile spraying method for fabricating superhydrophobic leather coating. Colloids Surf. A Physicochem. Eng. Asp., 2015, 472, 21-25. DOI: 10.1016/j.colsurfa.2015.02.019
  • 42. Sutar R. S., Shi B., Kanchankoti S. S., Ingole S. S., Jamadar W. S., Sayyad A. J., Khot P. B., Sadasivuni K. K., Latthe S. S., Liu S., Bhosale A. K., Development of self-cleaning superhydrophobic cotton fabric through silica/PDMS composite coating. Surf. Topogr.: Metrol. Prop., 2023, 11, 045004. DOI: 10.1088/2051- 672X/ad0452
  • 43. Masłowska-Lipowicz I., Słubik A., Novel method of obtaining textile fabrics with self-cleaning and antimicrobial properties. The Journal of The Textile Institute, 2022, 114(10), 1509–1517. DOI: 10.1080/00405000.2022.2131954
  • 44. Marques S. M., Carvalho I., Leite T. R., Henriques M., Carvalho S., Antimicrobial TiN-Ag Coatings in Leather Insole for Diabetic Foot. Materials, 2022, 15 (6), 2009. DOI: 10.3390/ma15062009
  • 45. Vega M. M., Guzmán D., Pozos D. A. C., Arévalo A. P. C., Ramírez A. S., Garibo D., García M. R. G., Pestryakov A., Bogdanchikova N., Application of silver nanoparticles to reduce bacterial growth on leather for footwear manufacturing. Journal of Applied Research and Technology, 2021, 19(1), 41-48. DOI: 10.22201/icat.24486736e.2021.19.1.1491
  • 46. Rani S., Goel A., Microencapsulation technology in textiles: A review study. The Pharma Innovation Journal, 2021, 10 (5), 660–663.
  • 47. Boh Podgornik, B., Šandrić S., Kert, M., Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability—A Systematic Review. Coatings, 2021, 11 (11), 1371. DOI: 10.3390/coatings11111371
  • 48. Tulshyan, A., Dedhia E., An overview of microencapsulation technology in the application of aroma and antibacterial finishes. International Journal of Home Science, 2021, 7 (1), 34–39. DOI: 10.22271/23957476.2021.V7.I1A.1105
  • 49. Bansode S., Banarjee S., Gaikwad D., Jadhav S., Thorat R., Microencapsulation: A review. International Journal of Pharmaceutical Sciences Review and Research, 2010, 1 (2), 38-43.
  • 50. Chanana, A., Kataria M. K., Sharma M., Bilandi A., Microencapsulation: Advantages in applications. International Research Journal of Pharmacy, 2013, 4 (2), 1–5.
  • 51. Karavana, H. A., Rencber S., Karavana S. Y., Yalçın F., Encapsulated Chlorhexidine Digluconate Usage on the Diabetic Footwear Lining Leathers. In: International Conference on Advanced Materials and Systems (ICAMS), 2016, The National Research & Development Institute for Textiles and Leather-INCDTP. DOI: 10.24264/icams-2016.II.11
  • 52. Masłowska-Lipowicz I., Słubik A., Novel method of obtaining textile fabrics with self-cleaning and antimicrobial properties. The Journal of the Textile Institiute, 2023, 114 (10), 1509-1517. DOI: 10.1080/00405000.2022.2131954
  • 53. Mahmud Y., Uddin N., Acter T., Uddin Md. M., Chowdhury A. M. S., Bari Md. L., Mustafa A. S., Shamsuddin S. Md., Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing. Advances in Materials Research, 2020, 9 (3), 233-250. DOI: 10.12989/amr.2020.9.3.233
  • 54. Masłowska-Lipowicz I., Słubik A., Wyrębska Ł, Miśkiewicz K., Adamczyk M., Lasoń-Rydel M., Footwear Innovation to Improve the Comfort of Use. In: Ławińska K., Jabłońska M.(red.), The importance of social innovations in the knowledge-based economy in the context of footwear sector solutions, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2024.
  • 55. Berechet, M. D., Chirilă C., Deselnicu V., Antifungal activity of some essential oils on cotton fabrics. In: International Conference on Advanced Materials and Systems (ICAMS), 2016. The National Research & Development Institute for Textiles and Leather-INCDTP. DOI: 10.24264/icams-2016.II.1
  • 56. Chirilă, C., Deselnicu V., Berechet, M. D., Footwear protection against fungi using thyme essential oil. Leather and Footwear Journal, 2017, 17(3), 173-178. DOI: 10.24264/lfj.17.3.7
  • 57. Deselnicu V., Chirilă C., Antimicrobial composition for the protection of leather, furs and leather articles. In: International Conference on Advanced Materials and Systems (ICAMS), 2018, pp. 69-74. The National Research & Development Institute for Textiles and LeatherINCDTP. DOI: 10.24264/icams-2018.I.9
  • 58. Niculescu O., Gaidau C., Badea E., Miu L., Gurau D., Berechet M. D., Ecological approaches for protecting and perfuming natural sheepskin fur. In: 8th International Conference on Advanced Materials and Systems (ICAMS), 2020, 225-230. DOI: 10.24264/icams-2020.II.20
  • 59. Chirila L., Popescu A., Danila A., Constantinescu R., Sabina O., Stan M., Ecofriendly antibacterial and biocompatible coatings by applying cinnamon essential oil and propolis based emulsions on cotton textiles. Journal of Natural Fibers, 2022, 19(16), 14435-14448. DOI: 10.1080/15440478.2022.2064397
  • 60. Aksoy A., Kaplan S., Production and performance analysis of an antibacterial foot sweat pad. Fibers and Polymers, 2013, 14, 316-323. DOI: 10.1007/s12221-013-0316-z
  • 61. Rego E. B., Inubushi T., Kawazoe A., Tanimoto K., Miyauchi M., Tanaka E., Takata T., Tanne K., Ultrasound stimulation induces PGE(2) synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. Ultrasound in Medicine & Biology, 2010, 36(6), 907–915. DOI: 10.1016/j.ultrasmedbio.2010.03.008
  • 62. Daeschler S. C., Harhaus L., Schoenle P., Boecker A., Kneser U., Bergmeister K. D., Ultrasound and shock-wave stimulation to promote axonal regeneration following nerve surgery: A systematic review and meta-analysis of preclinical studies. Scientific Reports, 2018, 8(1), 3168. DOI: 10.1038/s41598-018-21540-5
  • 63. Wang T., Ito A., Xu S., Kawai H., Kuroki H., Aoyama T., Low-intensity pulsed ultrasound prompts both functional and histologic improvements while upregulating the brain-derived neurotrophic factor expression after sciatic crush injury in rats. Ultrasound in Medicine & Biology, 2021, 47 (6),1586–1595. DOI: 10.1016/j.ultrasmedbio.2021.02.009
  • 64. Atherton P., Lausecker F., Harrison A., Ballestrem C., Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity. Journal of Cell Science, 2017, 130 (14), 2277–2291. DOI: 10.1242/jcs.192781
  • 65. Haffey P.R., Bansal N., Kaye E., Ottestad E., Aiyer R., Noori S., Gulati A., The regenerative potential of therapeutic ultrasound on neural tissue: A pragmatic review. Pain Medicine, 2020, 21 (7), 1494–1506. DOI: 10.1093/pm/pnaa090
  • 66. Berber R., Aziz S., Simkins J., Lin S. S., Mangwani J., Low Intensity Pulsed Ultrasound Therapy (LIPUS): A review of evidence and potential applications in diabetics. Journal of Clinical Orthopaedics and Trauma, 2020, 11(4), 500-505. DOI: 10.1016/j.jcot.2020.10.023
  • 67. Gandhi A., Liporace F., Azad V., Mattie J., Lin S. S., Diabetic Fracture Healing. Foot and Ankle Clinics, 2006, 11(4), 805-824. DOI: 10.1016/j.fcl.2006.06.009
  • 68. Wukich D.K., Joseph A., Ryan M., Ramirez C., Irrgang J. J., Outcomes of Ankle Fractures in Patients with Uncomplicated versus Complicated Diabetes. Foot & Ankle International, 2011, 32(2), 120-130. DOI: 10.3113/ FAI.2011.0120
  • 69. Bajpai, A., Nadkarni S., Neidrauer M., Weingarten M. S., Lewin P. A., Spiller K. L., Effects of Non-thermal, Noncavitational Ultrasound Exposure on Human Diabetic Ulcer Healing and Inflammatory Gene Expression in a Pilot Study. Ultrasound in Medicine & Biology, 2018, 44 (9), 2043-2049. DOI: 10.1016/j.ultrasmedbio.2018.05.011
  • 70. Lv H., Liu J., Zhen C., Wang Y., Wei Y., Ren W., Shang P., Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Proliferation, 2021, 54(3), e12982. DOI: 10.1111/cpr.12982
  • 71. Rathnayake A., Saboo A., Vangaveti V., Malabu U., Electromechanical therapy in diabetic foot ulcers patients: A systematic review and meta-analysis. Journal of Diabetes & Metabolic Disorders, 2023, 22(2), 967-984. DOI: 10.1007/s40200-023-01240-2
  • 72. Sharif N. A., Electrical, electromagnetic, ultrasound wave therapies, and electronic implants for neuronal rejuvenation, neuroprotection, axonal regeneration, and IOP reduction. Journal of Ocular Pharmacology and Therapeutics, 2023, 39(8), 477-498. DOI: 10.1089/jop.2022.0046
  • 73. Fayez A., El-Sabbahi S. A., Mohamed R. R., Combined effect of pulsed electromagnetic field and pulsed ultrasound therapy in treating knee osteoarthritis. International Journal of Health Sciences, 2022, 6(S5), 8960–8976. DOI: 10.53730/ijhs.v6nS5.10926
  • 74. Collings R., Freeman J., Latour J. M., Paton J., Footwear and insole design features for offloading the diabetic at risk foot—A systematic review and metaanalyses. Endocrinology Diabetes and Metabolism, 2021, 4(1), e00132. DOI: 10.1002/edm2.132
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3ed61765-4b8d-429a-afde-5bdedbe46672
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.