Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 68, no. 2 | 289--302
Tytuł artykułu

Analysis of the characteristics of magnetic properties change in the rock failure process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is difcult to observe changes in the internal structure of natural rocks when under certain pressure ranges. However, such rocks have specifc magnetic properties that are established during their formation process. Through studying changes in their magnetic properties while under pressure, which are readily observed and analyzed, as combined and contrasted with their associated structural changes, the relationship between the stress–strain and the magnetic feld intensity can be established. Based on the stress–strain and magnetic feld strength data obtained from the relevant literature, the process of rock and rock-like mechanical failure can be divided into three stages: elastic, plastic, and rupture. The performances of diferent rocks during these stages were analyzed, and there was an obvious transition point between any two adjacent stages. Thus, this study provides theoretical support to establish the relationship between structure and magnetic variations of rocks and rock-like bodies.
Wydawca

Czasopismo
Rocznik
Strony
289--302
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
autor
  • Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China, sunqiang04@cumt.edu.cn
  • Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
  • Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an, China
autor
  • College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
Bibliografia
  • 1. Anastasiadis C, Stavrakas I, Triantis D, Vallianatos F (2007) Correlation of pressure stimulated currents in rocks with the damage parameter. Ann Geophys 50:1–6. https://doi.org/10.4401/ag-3083
  • 2. Bolyachkin AS, Neznakhin DS, Bartashevich MI (2015) The effect of magnetization anisotropy and paramagnetic susceptibility on the magnetization process. J Appl Phys 118(21):213902. https://doi.org/10.1063/1.4936604
  • 3. Borradaile GJ (1988) Magnetic susceptibility. Petrofabrics and strain. Tectonophysics 156(1):1–20. https://doi.org/10.1016/0040-1951(88)90279-x
  • 4. Byerlee J (1978) A review of rock mechanics studies in the United States pertinent to earthquake prediction. Pure Appl Geophys 116(4–5):586–602. https://doi.org/10.1007/bf00876526
  • 5. Chen G, Xia D, Yu Y, Mao C (2012) Experimental research on stress-strain-magnetic induction intensity effect in the process of rock compression. J Exp Mech 27(6):669–676 (in Chinese)
  • 6. Cress G, Brady B, Rowell G (1987) Sources of electromagnetic radiation from fracture of rock samples in laboratory. Geophys Res Lett 14(4):331–334. https://doi.org/10.1029/gl014i004p00331
  • 7. Erber T, Guralnick SA, Desai RD, Kwok W (1999) Piezomagnetism and Fatigue. J Phys D Appl Phys 30(20):2818. https://doi.org/10.1088/0022-3727/30/20/008
  • 8. Frid V (1997) Rockburst hazard forecast by electromagnetic radiation excited by rock fracture. Rock Mech Rock Eng 30(4):229–236. https://doi.org/10.1007/bf01045719
  • 9. Guralnick SA, Bao S, Erber T (2008) Piezomagnetism and Fatigue: II. J Phys D Appl Phys 41(11):115006. https://doi.org/10.1088/0022-3727/41/11/115006
  • 10. Hao J, Huang P, Zhou J (1993) The effect of cracking on remanent magnetization of rocks—it’s implication to earthquake prediction. Acta Geophys Sin 36(2):203–211 (in Chinese)
  • 11. He Y, Song X, Li B, Li Z, Liu L (2015) A laboratory research on magnetic fabric response of natural rock samples in the process of uniaxial compression to rupture. Journal of Taiyuan Univ Technol 46(6):672–679. https://doi.org/10.16355/j.cnki.issn1007-9432tyut.2015.06.008(in Chinese)
  • 12. Huang P, Hao J, Zhou J (1990) The effect pressure and temperature on magnetic of rocks from the area near the epicenter of the Liyang earthquake. Earthq Res China 6(1):14–22 (in Chinese)
  • 13. Jin W, Zhang J, Chen C, Mao J, Cui L (2016) A new method for fatigue study of reinforced concrete structures based on piezomagnetism. J Build Struct 37(4):133–142. https://doi.org/10.14006/j.jzjgxb.2016.04.018(in Chinese)
  • 14. Kean WF, Day R, Fuller M, Schmidt VA (1976) The effect of uniaxial compression on the initial susceptibility of rocks as a function of grain size and composition of their constituent titanomagnetites. J Geophys Res 81(5):861–872. https://doi.org/10.1029/jb081i005p00861
  • 15. Lanham M, Fuller M (2013) Weak field control of remanent magnetization changes produced by uniaxial stress cycling. Geophys Res Lett 15(5):511–513. https://doi.org/10.1029/gl015i005p00511
  • 16. Lavrov A (2001) Kaiser effect observation in brittle rock cyclically loaded with different loading rates. Mech Mater 33(11):669–677. https://doi.org/10.1016/s0167-6636(01)00081-3
  • 17. Lazreg S, Hubert O (2010) Detection of fatigue limit thanks to piezomagnetic measurements. IEEE Trans Magn 46(2):556–559. https://doi.org/10.1109/tmag.2009.2033126
  • 18. Li S, Huang P, Liu X (1985) The variation of rock susceptibility with uniaxial pressure. Northwest Seismol J 7(2):14–22 (in Chinese)
  • 19. Lockner DA (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899. https://doi.org/10.1016/0148-9062(93)90041-b
  • 20. Mansurov VA (1994) Acoustic emission from failing rock behaviour. Rock Mech Rock Eng 27(3):173–182. https://doi.org/10.1007/bf01020309
  • 21. Martin RJ, Wyss M (1975) Magnetic properties of rocks and volumetric strain in uniaxial failure tests. Pure Appl Geophys 113(1):107–118. https://doi.org/10.1007/bf01592903
  • 22. Miao C, Zhang X, Du HX (2004) New fire concrete damage assessment technology. In: Proceedings of the eighth national conference on nondestructive testing technology for construction projects (in Chinese)
  • 23. Ohnaka M, Kinoshita H (2010) Effects of uniaxial compression on remanent magnetization. J Geomagn Geoelectr 20(2):93–99. https://doi.org/10.5636/jgg.20.93
  • 24. Revol J, Day R, Fuller MD (1977) Magnetic behavior of magnetite and rocks stressed to failure—relation to earthquake prediction. Earth Planet Sci Lett 37(2):296–306. https://doi.org/10.1016/0012-821x(77)90175-3
  • 25. Saltas V, Vallianatos F, Triantis D, Koumoudeli T, Stavrakas I (2019) Non-extensive statistical analysis of acoustic emissions series recorded during the uniaxial compression of brittle rocks. Phys A 528(2019):121498. https://doi.org/10.1016/j.physa.2019.121498
  • 26. Stavrakas I, Kourkoulis S, Triantis D (2019) Damage evolution in marble under uniaxial compression monitored by pressure stimulated currents and acoustic emissions. Fract Struct Integr 13(50):573–583. https://doi.org/10.3221/igf-esis.50.48
  • 27. Sun X (2014) Experimental research of magnetic induction abnormality of compression failure process. Master thesis of Northeastern University (in Chinese)
  • 28. Sun Q, Zhu S, Xue L (2015) Electrical resistivity variation in uniaxial rock compression. Arab J Geosci 8(4):1869–1880. https://doi.org/10.1007/s12517-014-1381-3
  • 29. Sun Q, Zhao CH, Lv HJ (2016) Radon emission evolution and rock failure. Acta Geodaetica Et Geophysica 51(3):583–595. https://doi.org/10.1007/s40328-015-0147-z
  • 30. Triantis D, Vallianatos F, Stavrakas I, Hloupis G (2012) Relaxation phenomena of electric signal emissions from rocks following to abrupt mechanical stress application. Ann Geophys 55:207–212. https://doi.org/10.4401/ag-5316
  • 31. Triantis D, Stavrakas I, Pasiou ED, Hloupis G, Kourkoulis SK (2015) Innovative experimental techniques in the service of restoration of stone monuments—part II: marble epistyles under shear. Procedia Eng 109:276–284. https://doi.org/10.1016/j.proeng.2015.06.233
  • 32. Xue L, Qin S, Sun Q, Wang Y (2013) A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech Rock Eng 47:1183–1195. https://doi.org/10.1007/s00603-013-0479-3
  • 33. Xue L, Qin S, Sun Q, Wang Y, Qian H (2014) A quantitative criterion to describe the deformation process of rock sample subjected to uniaxial compression: from criticality to final failure. Physica A 410(12):470–482. https://doi.org/10.1016/j.physa.2014.05.062
  • 34. Yu Y (2011) Research on stress-magnetic strength experimental of compression process for brittle rock. Master thesis of Northeastern University. https://doi.org/10.7666/d.j0123352 (in Chinese)
  • 35. Zhang G, Zhang J, Jin L, Chen J (2014) Research progress on mechanics and fatigue of magnetic materials based on magnetostatic effect. Mater Introd 36(5):1–3. https://doi.org/10.3969/j.issn.1005-023x.2014.09.002(in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-19e19da2-fecc-4cd4-837a-f9c1aece0b20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.