Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 3 |
Tytuł artykułu

Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background. The lentil plant, Lens culinaris L., is a member of the Leguminoceae family and constitutes one of the most important traditional dietary components. The purpose of the current study was to investigate the effects of sprouting for 3, 4, 5 and 6 days on proximate, bioactive compounds and antioxidative characteristics of lentil (Lens culinaris) sprouts. Material and methods. Lentil seeds were soaked in distilled water (1:10, w/v) for 12 h at room temperature (~25°C), then kept between thick layers of cotton cloth and allowed to germinate in the dark for 3, 4, 5 and 6 days. The nutritional composition, protein solubility, free amino acids, antinutritional factors, bioactive compounds and antioxidant activity of raw and germinated samples were determined using standard official procedures. Results. Sprouting process caused significant (P < 0.05) increases in moisture, protein, ash, crude fiber, protein solubility, free amino acids, total, reducing and nonreducing sugars. However, oil content, antinutritional factors (tannins and phytic acid) significantly (P < 0.05) decreased. Results indicated that total essential amino acids of lentil seeds protein formed 38.10% of the total amino acid content. Sulfur-containing amino acids were the first limiting amino acid, while threonine was the second limiting amino acid in raw and germinated lentil seeds. Sprouting process has a positive effect on the essential amino acid contents and protein efficiency ratio (PER) of lentil sprouts. Phenolics content increased from 1341.13 mg/100 g DW in raw lentil seeds to 1411.50, 1463.00, 1630.20 and 1510.10 in those samples germinated for 3, 4, 5 and 6 days, respectively. Sprouted seeds had higher DPPH radical scavenging and reducing power activities. Conclusions. Based on these results, sprouting process is recommended to increase nutritive value, and antioxidant activity of lentil seeds.
Wydawca
-
Rocznik
Tom
14
Numer
3
Opis fizyczny
p.233-246,ref.
Twórcy
autor
  • Department of Biochemistry, Faculty of Agriculture, Cairo University,12613 Giza, Egypt
autor
  • Department of Biochemistry, Faculty of Agriculture, Cairo University,12613 Giza, Egypt
Bibliografia
  • Afify, A. M. R., El-Beltagi, H. S., Abd El-Salam, S. M., Azza, A., Omran, A. A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. Plos One, 7(2), e31154.
  • Alajaji, S. A., El-Adawy, T. A. (2006). Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Comp. Anal., 19, 806-812.
  • Alonso, R., Aguirre, A., Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem., 68, 159-165.
  • Alsmeyer, R. H., Cunningham, A. E., Happich, M. L. (1974). Equations predict PER from amino acid analysis. Food Techn, 28, 34-40.
  • Alvarez-Jubete, L., Arendt, E. K., Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr., 60, 4, 240-257.
  • AOAC (1990). Official methods of analysis, 15th ed. Washington, DC: Association of Official Analytical Chemists. AOCS (1990). Official methods and recommended practices of the American Oil Chemicsts’ Society (4th ed.). Champaign: American Oil Chemists’ Society.
  • AOAC (2000). Official methods of analysis. 17th ed. Washington, DC: Association of Official Analytical Chemists.
  • Bau, H., Villaume, C., Nicolas, J., Mejean, L. (1997). Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agric., 73(1), 1-9.
  • Candela, M., Astiasaran, I., Bello, J. (1997). Cooking and warm-holding: effect on general composition and amino acids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). J. Agric. Food Chem., 45, 4763^1767.
  • Carbonaro, M., Cappelloni, M., Nicoli, S., Lucarini, M., Car- novale, E. (1997). Solubility-digestibility relationship of legume proteins. J. Agric. Food Chem., 45, 3387-3394.
  • Ceming, J., Guilbot, J. (1973). A specific method for the determination of pentosans in cereals and cereal products. Cereal Chem., 50, 176-183.
  • Chavan, J. K., Heigaard, J. (1981). Detection and partial characterization of subtilisin inhibitors in legume seeds by isoelectric focusing. J. Sci. Food Agric., 32, 857-862.
  • Chavan, J. K., Kadam, S. S. (1989). Nutritional improvement of cereals by sprouting. Crit. Rev. Food Sci. Nutr., 28(5), 401-437.
  • Cheryan, M. (1980). Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr., 1(4), 297-335.
  • Chilomer, K., Kasprowicz-Potocka, M., Gulewicz, R, Frankiewicz, A. (2013). The influence of lupin seed germination on the chemical composition and standardized ileal digestibility of protein and amino acids in pigs: impact of lupin seed germination on digestibility in pigs. J. Anim. Physiol. Anim. Nutr., 97(4), 639-646.
  • Chou, H. J., Kuo, J. T., Lin, E. S. (2009). Comparative antioxidant properties of water extracts from different parts of beefsteak plant (Perilla frutescens). J. Food Drug. Anal. 17, 489-496.
  • Chung, T., Nwokolo, E. N., Sim, J. S. (1989). Compositional and digestibility changes in sprouted barley and canola seeds. Plant Foods Hum. Nutr., 39, 267-278.
  • Colmenares, De Ruiz, A. S., Bressani, R. (1990). Effect of germination on the chemical composition and nutritional value of amaranth grain. Cereal Chem., 67, 519-522.
  • Correia, 1., Nunes, A., Barros, A. S., Delgadillo, I. (2008). Protein profile and malt activities during sorghum germination. J. Sci. Food Agric., 88, 2598-2605.
  • Doblado, R., Frias, J., Vidal-Valverde, C. (2007). Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chem., 101(3), 918-923.
  • Dragan, A., Dusanka, D. A., Drago, B., Vesna, R., Bono, L., Nenad, T. (2007). SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem., 14, 827-845.
  • Duh, P. D. (1998). Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc., 75, 455-461.
  • Egli, I., Davidsson, L., Zeder, C., Walczyk, T., Hurrell, R. (2004). Dephytinization of a complementary foods based on wheat and soy increases zinc, but not copper apparent absorption in adults. J. Nutr., 134, 1077-1080.
  • El-Adawy, T. A. (2002). Nutritional composition and An- tinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Food Hum. Nutr., 57, 83-97.
  • Elemo, G. N., Elemo, B. O., Okafor, J. N. C. (2011). Preparation and nutritional compostion of a weaning food formulated from germinated sorghum (Sorghum bicolor) and steamed cooked cowpea (Vigria unguiculata Walp.). Am. J. Food Tech., 6(5), 413-421.
  • Elkhalifa, A. O., Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chem, 121, 387-392.
  • El Maki, H. B, Babiker, E. E, El Tinay, A. H. (1999). Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem, 64, 331-336.
  • Enujiugha, V. E, Badejo, A. A, Iyiola, S. O, Oluwamu- komi, M. O. (2003). Effect of germination on the nutritional and functional properties of African oil bean (Pentaclethra macrophylla Benth) seed flour. Food Ag- ric. Envir, 1(3/4), 72-75.
  • FAO/WHO/UNU (1985). Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report Series, No. 724. Geneva: World Health Organization.
  • FAO/WHO (1991). Protein quality evaluation. Report of a Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper, 51, 1-66.
  • Farzana, W, Khalil, I. A. 1999. Protein quality of tropical food legumes. J. Sci. Technol, 23, 13-19.
  • Gernah, D. I, Ariahu, C. C, Ingbian, E. K. (2011). Effects of malting and lactic fermentation on some chemical and functional properties of maize (Zea mays). Am. J. Food Technol, 6, 404-412.
  • Ghavidel, R. A, Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. J. Food Sci. Nutr, 40, 1292-1299.
  • Giannakoula, A. E, llias, F. I, DragiSic Maksimovic, J, Maksimovid, V. M, Zivanovid, B. D. (2012). The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. J. Food Comp. Anal, 28, 46-53.
  • Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. In: B. J. F. Hudson (Ed.), Food antioxidants (pp. 1—18). London: Elsevier Applied Science.
  • Greiner, R, Muzquiz, M, Burbano, C, Cuadrado, C, Pedrosa, M. M, Goyoaga, C. (2001). Purification and characterization of a phytate-degrading enzyme from germinated Faba beans (Viciafaba var. Alameda). J. Ag- ric. Food Chem, 49, 2234-2240.
  • Grotewold, E. (2006). The science of flavonoids. New York: Springer.
  • Hooda, S, Jood, S. (2003). Effect of soaking and germination on nutrient and antinutrient contents of fenugreek (Trigonell foenum-graecum L.). J. Food Biochem, 27, 165-176.
  • Iqbal, A, Khalil, I. A, Ateeq, N„ Khan, M. S. (2006). Nutritional quality of important food legumes. Food Chem, 97, 331-335.
  • Jayaprakasha, G. K, Selvi, T, Sakariah, K. K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinis- fera) seed extracts. Food Res. Int, 36, 117-122.
  • Juntachote, T, Berghofer, E. (2005). Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chem, 92, 193-202.
  • Kalpanadevi, V, Mohan, V. R. (2013). Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. Food Sci. Technol, 51, 455-461.
  • Kavas, A, Nehir, S. (1992). Changes in nutritive value of lentils and mung beans during germination. Chem. Mik- robiol. Technol. Lebensm, 14, 3-9.
  • Khan, M. A, Ghafoor, A. (1978). The effect of soaking, germination and cooking on the protein quality of Mash Beans (Phaseolus ungo). J. Sci. Food Agric, 29,461-464.
  • Khandelwal, S, Udipi, S. A, Ghugre, P. (2010). Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Res. Int, 43, 526-530.
  • Khattak, A. B, Zeb, A, Bibi, N, Khalil, S. A, Khattak, M. S. (2007). Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicerarietinum L.) sprouts. Food Chem, 104, 1074-1079.
  • Kim, K. H, Tsao, R, Yang, R, Cui, S. W. (2006). Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem, 95(3), 466-473.
  • Kumar, R. (1992). Antinutritional factors, the potential risks of toxicity and methods to alleviate them. In A. Speedy, P.-L. Puglise (Eds), Proceedings of the FAO Expert Consultation held at the Malaysian Agricultural Research and Development Institute (MARDI) in Kuala Lumpur, Malaysia, 14-18 October, 1991.
  • Kumar, V., Sinha, A. K., Makkar, H. P., Backer, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chem., 120, 945-959.
  • Lako, J., Trenerry, V., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of fijian fruit, vegetables and other readily available foods. Food Chem., 101,1727-1741.
  • Lasekan, O. O. (1996). Effect of germination on a-amylase activities and rheologcal properties of sorghum (Sorghum biocolar) and acha (Digitaria exilis) grains. J. Food Sci. Technol., 33, 329-331.
  • Lee, Y. R., Woo, K. S., Kim, K. J., Son, J. R., Jeong, J. R. (2007). Antioxidant activity of ethanol extracts from germinated specialty rough rice. Food Sci. Biotechn., 16(5), 765-770.
  • Liener, 1. E. (1994). Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr., 34, 31-67.
  • Lopez-Amoros, M. L., Hernandez, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal., 19(4), 277-283.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275.
  • Mahmoud, A. H., El-Anany, A. M. (2014). Nutritional and sensory evaluation of a complementary food formulated from rice, faba beans, sweet potato flour, and peanut oil. Food Nutr. Bull., 35, 4, 403-113.
  • Mapelli, S., Brambilla, L, Bertani, A. (2001). Free amino acids in kernel and during the first growing phase of walnut plant. Tree Physiol., 21, 1299-1302.
  • Meda, A., Lamien, Ch. E., Romito, M., Millogo, J., Nacoul- ma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well at their radical scavenging activity. Food Chem., 91, 571-577.
  • Miller, E. L. (1967). Determination of the tryptophan content in feeding stuffs with particular reference to cereals. J. Sci. Food Agric., 18, 381-386.
  • Monagas, M., Bartoloe, B., Gomez-Cordoves, C. (2005). Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr., 45, 85-118.
  • Moore, S., Stein, W. H. (1963). Chromatographic determination of amino acids by the use of automatic recording equipment. In: S. P. Colowick, N. O. Kaplan (Eds.), Methods in enzymology. Vol. 6 (pp. 815-860). New York: Academic Press.
  • Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem., 89, 489-495.
  • Muntz, K. (1996). Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J. Exp. Bot., 47, 605-622.
  • Narsih, Yunianta, Harijono (2012). The study of germination and soaking time to improve nutritional quality of sorghum seed. Int. Food Res. J., 19(4), 1429-1432.
  • Nonogaki, H., Basse), G. W., Bewley, J. W. (2010). Germination-still a mystery. Plant Sci. DOI:10.1016/j.plantsci. 2010.02.010.
  • Picchi, V., Migliori, C., Lo Scalzo, R., Campanelli, G., Ferrari, V., Di Cesare, L. F. (2012). Phytochemical content in organic and conventionally grown italian cauliflower. Food Chem., 130, 501-509.
  • Porres, J. M., Urbano, G., Femandez-Figares, I., Prieto, C., Perez, L., Aguilera, G. F. (2002). Digestive utilisation of protein and amino acids from raw and heated lentils by growing rats. J. Sci. Food Agric., 82, 1740-1747.
  • Randhir, R., Lin, Y. T., Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Proc. Biochem., 39, 637-647.
  • Ravi Kiran, C., Madhavi, Y., Raghava Rao, T. (2012). Evaluation of phytochemicals and antioxidant activities of Ceiba pentandra (Kapok) seed oil. J. Bioanal. Biomed., 4(4), 068-073.
  • Reddy, N. R., Salunkhe, D. K. (1981). Interactions between phytate, protein and minerals in whey fractions of black gram. J. Food Sci., 46, 564-570.
  • Reyden, P., Sel Vendran, R. R. (1993). Phytic acid: Properties and determination. In: R. Macrae, R. K. Robinson, M. J. Sadler (Eds.), Encyclopedia of food science, food technology and nutrition (pp. 3582-3587). London: Academic Press.
  • Rodriguez, C., Frias, J., Vidal-Valverde, C., Hernandez, A. (2008). Correlation between some nitrogen fractions, lysine, histidine, tyrosine, and ornithine contents during the germination of peas, beans, and lentils. Food Chem., 108, 245-252.
  • Rosen, H. (1957). A modified ninhydrin calorimetric analysis for amino acids. Arch. Biochem. Biophys.,67,10-15.
  • Rozan, P., Kuo, Y. H., Lambein, F. (2000). Amino acids in seeds and seedlings of the genus Lens. Phytochemistry, 58, 281-289.
  • Rubio, L. A., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M. M. (2002). High apparent leal digestibility of amino acids in raw and germinated Faba bean (Vicia faba) and chickpea (Cicerarietinum) - based diets for rats. J. Sci. Food Agric., 82, 1710-1717.
  • Saharan, K., Khetarpaul, N., Bishnoi, S. (2002). Antinutrients and protein digestibility of Faba bean and Rice bean as affected by soaking, dehulling and germination. J. Food Sci. Techn., 39, 418-422.
  • Sandberg, A.-S. 2002. Bioavailibility of minerals in legumes. Br. J. Nutr., 88(3), S281-S285.
  • Sathe, S. K., Salunkhe, D. K. (1981). Solubilization and electrophoretic characterization of the great Northern bean (Phaseolus vulgaris L.) proteins. J. Food Sci., 46, 82-87.
  • Saxena, A. K., Chadha, M., Sharma, S. (2003). Nutrients and antinutrients in chickpea (Cicerarietinum L.)cultivars after soaking and pressure cooking. J. Food Sci. Techn., 40, 493-197.
  • Shakuntala, S., Naik, J. P., Jeyarani, T., Naidu, M. M., Srini- vas, P. (2011). Characterization of germinated fenugreek (Trigonella foenum-graecum L.) seed fractions. Int. J. Food Sci. Technol., 46, 2337-2343.
  • Sharma, P., Gujral, H. S. (2010b). Antioxidant and polyphenols oxidase activity of germinated barley and its milling fractions. Food Chem., 120(3), 673-678.
  • Shehata, A. M. E. L. (1992). Hard-to-cook phenomenon in legumes. Food Rev. Int., 8, 191-221.
  • Shimelis, E. A., Rakshit, S. K. (2007). Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem., 103, 161-172.
  • Siddhuraju, P., Mohan, P. S., Becker, K. (2002). Studies on the antioxidant activity of Indian Labumun (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem., 79,61-67.
  • Soetan, K. O. (2008). Pharmacological and other beneficial effects of antinutritional factors in plants. A review. Afr. J. Biotechnol., 7(25), 4713-1721.
  • Somogyi, M. (1945). A new reagent for the determination of sugars. J. Biol. Chem., 160, 61-68.
  • Tarasevičiene, Z., Danilčenko, H., Jariene, E., Paulauskiene, A., Gajewski, M. (2009). Changes in some chemical components during germination of broccoli seeds. Not. Bot. Hort. Agrobot. Cluj, 37(2), 173-176.
  • Teow, C. C., Truong, V., McFeeters, R. F., Thompson, R. P., Yencho, G. (2007). Antioxidant activities, phenolic and p-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem., 103, 829-838.
  • Uppal, V., Bains, K. (2012). Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J. Food Sci. Technol., 49(2), 184-191.
  • Uvere, P. O., Orji, G. S. (2002). Lipase activities during malting and fermentation of sorghum for burukutu production. J. Inst. Brew., 108(2), 256-260.
  • Vadivel, V., Biesalski, H. K. (2012). Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains. J. Food Sci. Technol., 49(6), 673-684.
  • Wang, N., Lewis, M. J., Brennan, J. G., Westby, A. (1997). Effect of processing methods on nutrients and anti-nutri- tional factors in cowpea. Food Chem., 58, 59-68.
  • Wheeler, E. I., Ferrel, R. E. (1971). A method for phytic acid determination in wheat and wheat fractions. Cereal Chem., 48,312-316.
  • Yemm, E. W., Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem. J., 57, 508-514.
  • Zanabria, E. R., Nienaltowska, K., De Jong, L. E. Q., Ha- senack, B. B. E., Nout, M. J. R. (2006). Effect of food processing of pearl millet (Pennisetum glaucum) IK.MP- -5 on the level of phenolics, phytate, iron and zinc. J. Sci. Food Agric., 86, 1391-1398.
  • Zhao, H., Fan, W., Dong, J., Lu, J., Chen, J., Shan, L. (2008). Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem., 107, 296-304.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f762bbbb-47b2-4d65-9df5-1875814a5d3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.