Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Not only as a result of the current energy crisis, opportunities to save energy are a highly focused topic in production. For this reason, the article proposes an approach to evaluate the part-specific energy consumption of production systems by utilization of simulation methods. As an application example, a Comau 6-axis robot is chosen, of which a physically based model is created in the CAE software SimulationX. This model is then exported as a Functional Mock-Up Unit (FMU) and co-simulated within a virtual commissioning environment. Virtual commissioning enables a controller to be connected to a model. Within a Software-in-the-Loop simulation, this is a virtual control system. Based on the movement specifications from the virtual controller, the movement behaviour of the machine can be simulated in the virtual commissioning tool ISG-virtuos and the FMU returns the associated power and energy curve as a result variable. For further use, this kind of enhanced simulation models provides the possibility to optimize the utilization of production systems for specific processes in the context of a complete production line or factory.
EN
This research paper outlines the methodology and application of geometric and static accuracy assessment of articulated industrial robots using the Extended Double Ball Bar (EDBB) as well as the Loaded Double Ball Bar (LDBB). In a first experiment, the EDBB is used to assess the geometric accuracy of a Comau NJ-130 robot. Advanced measuring trajectories are investigated that regard poses or axes configurations, which maximize the error influences of individual robot components, and, in this manner, increase the sensitivity for a large number of individual error parameters. The developed error-sensitive trajectories are validated in experimental studies and compared to the circular trajectories according to ISO 203-4. Next, the LDBB is used to assess an ABB IRB6700 manipulator under quasi-static loads of up to 600 Newton using circular testing according to ISO 230-4. The stiffness is identified from the loaded circular trajectories. Then, the stiffness is used to perform a reverse calculation to identify the kinematic errors on the path deviations. The concept is validated in a case study of quasi-static loaded circular testing using the LDBB compared to a Leica AT960 laser tracker (LT).
EN
In open-die forging it is state of the art to use simulation tools for creating forging plans and setpoint values for the forging press and the automated part manipulator. These forging plans define required positions and forces. Therefore, the process can be fully automated. However, even small variations of not considered influence parameters lead to different forging results and thus to a discontinuous process. Influencing factors are, e.g. material parameter deviations, uncertainties in force measurements or variations in the part temperature due to varying environmental conditions. This paper presents an approach for a fully automatic open-die forging process with respect to actual conditions, based on a parallel measurement of the workpiece geometry and temperature and a “process-real-time” adaptation on the controller system. The focus of this work is the development of a measuring strategy and an according sensor setup for the combined temperature and geometry measurement of the workpiece. In addition, the structure, the characteristic features of the components and the beam path of the sensors scanning units are shown. Furthermore, first experimental results for the alignment of the beam path are presented. In the outline, the setup and calibration strategy of the measurement system are stated.
EN
Within 200 years since the industrial revolution manufacturing systems have often changed their faces. Emerging nations, new markets, new inventions and the changing needs of the society forced them to adapt. Until today, the arising challenges are immensely diverse: highly individualized products, decreasing manufacturing time, limited resources and critical ecological footprints are only a few of them. Oftentimes solutions for these issues and other future requirements can be found by interrogating nature. Applying knowledge of biological principles to industrial manufacturing processes is recently referred to as "biological transformation of manufacturing systems". Hereby three levels of a biological transformation are introduced, starting from inspiration over integration to the interaction of biological and technical systems. The paper illustrates the idea of biological transformation with specific examples for each level. On the inspiration-level the design of manufacturing systems with elements of natural ecosystems is described. Thus flexibility is increased, material cycles are closed and waste will be reduced. Furthermore the integration-level is illustrated by the use of microorganisms in cutting fluids. Finally, evolutionary computing within an automatic joining cell is shown as an example for the interaction-level.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.